摘要
In order to meet the technical requirements of grinding the circumferential cutting edge of indexable inserts, thermo-mechanical properties of bowl-shaped grinding wheel in high speed grinding process and the influence of dimension variations of the grinding wheel on machining accuracy were investigated. Firstly, the variation trends of the dimension due to centrifugal force generated in different wheel speeds were studied and the effect of stress stiffening and spin softening was presented. Triangular heat flux distribution model was adopted to determine temperature distribution in grinding process. Temperature field cloud pictures were obtained by the finite element software. Then, dimension variation trends of wheel structure were acquired by considering the thermo-mechanical characteristic under combined action of centrifugal force and grinding heat at different speeds. A method of online dynamic monitoring and automatic compensation for dimension error of indexable insert was proposed. By experimental verification, the precision of the inserts satisfies the requirement of processing.
In order to meet the technical requirements of grinding the circumferential cutting edge of indexable inserts, thermo-mechanical properties of bowl-shaped grinding wheel in high speed grinding process and the influence of dimension variations of the grinding wheel on machining accuracy were investigated. Firstly, the variation trends of the dimension due to centrifugal force generated in different wheel speeds were studied and the effect of stress stiffening and spin softening was presented. Triangular heat flux distribution model was adopted to determine temperature distribution in grinding process. Temperature field cloud pictures were obtained by the finite element software. Then, dimension variation trends of wheel structure were acquired by considering the thermo-mechanical characteristic under combined action of centrifugal force and grinding heat at different speeds. A method of online dynamic monitoring and automatic compensation for dimension error of indexable insert was proposed. By experimental verification, the precision of the inserts satisfies the requirement of processing.
基金
Project(2010ZX04001-162)supported by the National Science and Technology Major Project of China