期刊文献+

一种基于双尺度高斯核方向导数的图像轮廓检测算法

Image Contour Detection Using Double-scale Gaussian Directional Derivatives Filter
下载PDF
导出
摘要 为了降低图像轮廓检测中纹理对检测结果的影响,提出一种基于双尺度高斯核方向导数滤波器的图像轮廓检测算法。结合大小两个尺度高斯核方向导数滤波器构造图像的边缘强度映射(ESM),小尺度高斯核方向导数滤波器增强了图像细节信息的检测能力,而大尺度高斯核方向导数滤波器起到抑制纹理的作用。利用ESM自身的全局和局部信息对ESM进行均衡化。通过阈值化和形态学处理,得到最终轮廓检测结果。实验表明,该方法有效可行。 In order to reduce influence of texture on the image contour detection results,an image contour detection algorithm based on double-scale gaussian directional derivatives filter is propsoed.Integrating a large scale factor gaussian directional derivatives filter with a small scale factor one to create the edge strength map(ESM)of an image,in which the utilization of small scale factor gaussian directional derivatives filter improves the detection performance of detail of image and of large scale factor one suppresses the texture.The equalization of the ESM is done using its global and local information.The final contour detection results are obtained through the operator of thresholding and morphology.Comparison with classical edge detection algorithm,Canny algorithm,the proposed method not only preserves the detection performance of image contour but also suppresses partial texture.
出处 《计算机与数字工程》 2015年第10期1861-1864,共4页 Computer & Digital Engineering
基金 国家自然科学基金(编号:61462001) 宁夏高校基金(编号:NGY2012096) 北方民族大学基金(编号:2014XYZ03 2014XYS17 2014XBZ04 2012Y040)资助
关键词 图像轮廓检测 高斯核方向导数滤波器 边缘强度映射(ESM) 纹理抑制 image contour detection gaussian directional derivatives filter edge strength map(ESM) texture suppression
  • 相关文献

参考文献10

  • 1D G Lowe. Distinctive image features from scale invari-ant keypoints [J ]. International Journal of ComputerVision,2004,60(2) :9M10.
  • 2Mehmet Emre Sargin,Alphan Altnok, Bangalore SManiunath, et al. Variable length open contour track-ing using a deformable trellis[J]. IEEE Trans on ImageProcessing,2011,20(4): 1023-1035.
  • 3Costas Panagiotakis,Ilias Grinias, Georgios Tziritas.Natural image segmentation based on tree equiparti-tion,Bayesian flooding and region merging [J]. IEEETrans on Image Processing,2011,20(8) ;2276-2287.
  • 4Michael Kass,Andrew Within, Demetri Terzopoulos.Snakes : Active contour models [J]. International Jour-nal of Computer Vision, 1988,1 : 321-331.
  • 5Marr D,Hildreth E. Theory of edge detection[M],Proc. R. Soc. of Lond. ,1980,B207:187-217.
  • 6Mitra Basu. Gaussian-based edge-detection methods-Asurvey[J]. IEEE trans On systems, man, and cyber-netics,2002,32(3) :252-260.
  • 7Jacob M,Unser M. Design of steerable filters for fea-ture detection using canny like critecria [ J ]. IEEETrans. Pattern. Anal Mach. Intell.,2004, 26 ( 8):1007-1019.
  • 8Canny J. A computational approach to edge detection [J]. IEEE Trans on Pattern Anal Machine Intell, 1986, 8(6):679 698.
  • 9William Mcllhagga. The Canny edge detector revisited[J]. International Journal of Computer Vision,2011,91:251-261.
  • 10Medina C R,Munoz Salinas R,Yeguas Bolivar E,etal. A novel method to look for the hysteresis thresh-olds for the Canny edge detector[J]. Pattern Recogni-tion,2011,44:1201-1211.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部