期刊文献+

Biological imaging without autofluorescence in the second near-infrared region 被引量:14

原文传递
导出
摘要 Fluorescence imaging is capable of acquiring anatomical and functional infor- mation with high spatial and temporal resolution. This imaging technique has been indispensable in biological research and disease detection/diagnosis. Imaging in the visible and to a lesser degree, in the near-infrared (NIR) regions below 900 nm, suffers from autofluorescence arising from endogenous fluorescent molecules in biological tissues. This autofluorescence interferes with fluorescent molecules of interest, causing a high background and low detection sensitivity. Here, we report that fluorescence imaging in the 1,500-1,700-nm region (termed "NIR-IIb") under 808-nm excitation results in nearly zero tissue autofluorescence, allowing for background-free imaging of fluorescent species in otherwise notoriously autofluorescent biological tissues, including liver. Imaging of the intrinsic fluorescence of individual fluorophores, such as a single carbon nanotube, can be readily achieved with high sensitivity and without autofluorescence background in mouse liver within the 1,500-1,700-nm wavelength region.
出处 《Nano Research》 SCIE EI CAS CSCD 2015年第9期3027-3034,共8页 纳米研究(英文版)
分类号 O [理学]
  • 相关文献

参考文献1

二级参考文献41

  • 1Xie, J.; Chen, K.; Huang, J.; Lee, S.; Wang, J.; Gao, J.; Li, X.; Chen, X. PET/NIRF/MRI triple functional iron oxidenanoparticles. Biomaterials 2010, 31, 3016-3022.
  • 2Lauffer, R. B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem. Rev. 1987, 87, 901-927.
  • 3Tsai, C. P.; Hung, Y.; Chou, Y. H.; Huang, D. M.; Hsiao, J. K.; Chang, C.; Chert, Y. C.; Mou, C. Y. High-contrast paramagnetic fluorescent mesoporous silica nanorods as a multi functional cell imaging probe. Small 2008, 4, 186-191.
  • 4Mulder, W. J.; Strijkers, G. J.; van Tilborg, G. A.; Griffioen, A. W.; Nicolay, K. Lipid-based nanoparticles for contrast- enhanced MRI and molecular imaging. NMR Biomed. 2006, 19, 142 164.
  • 5Bridot, J.-L.; Faure, A.-C.; Laurent, S.; Riviere, C.; Billotey, C.; Hiba, B.; Janier, M.; Josserand, V.; Coil, J.-L.; Vander Elst, L. Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 2007, 129, 5076-5084.
  • 6Zhang, B.; Jin, H.; Li, Y.; Chen, B.; Liu, S.; Shi, D. Bioinspired synthesis of gadolinium-based hybrid nanoparticles as MRI blood pool contrast agents with high relaxivity. J. Mater. Chem. 2012, 22, 14494-14501.
  • 7Gao, J.; Chen, K.; Xie, R.; Xie, J.; Yan, Y.; Cheng, Z.; Peng, X.; Chen, X. In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. Bioconjugate Chem. 2010, 21,604-609.
  • 8Gao, J.; Chen, K.; Xie, R.; Xie, J.; Lee, S.; Cheng, Z.; Peng, X.; Chen, X. Ultrasmall near-infrared non-cadmium quantum dots for in vivo tumor imaging. Small 2010, 6, 256-261.
  • 9Cheon, J.; Lee, J.-H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc. Chem. Res. 2008, 41, 1630-1640.
  • 10Jennings, L. E.; Long, N. J. 'Two is better than one'-probes for dual-modality molecular imaging. Chem. Commun. 2009, 3511-3524.

共引文献7

同被引文献33

引证文献14

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部