期刊文献+

Smoothed Estimator of Quantile Residual Lifetime for Right Censored Data

Smoothed Estimator of Quantile Residual Lifetime for Right Censored Data
原文传递
导出
摘要 It is of great interest to estimate quantile residual lifetime in medical science and many other fields. In survival analysis, Kaplan-Meier(K-M) estimator has been widely used to estimate the survival distribution. However, it is well-known that the K-M estimator is not continuous, thus it can not always be used to calculate quantile residual lifetime. In this paper, the authors propose a kernel smoothing method to give an estimator of quantile residual lifetime. By using modern empirical process techniques, the consistency and the asymptotic normality of the proposed estimator are provided neatly.The authors also present the empirical small sample performances of the estimator. Deficiency is introduced to compare the performance of the proposed estimator with the naive unsmoothed estimator of the quantile residaul lifetime. Further simulation studies indicate that the proposed estimator performs very well.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2015年第6期1374-1388,共15页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.71271128 the State Key Program of National Natural Science Foundation of China under Grant No.71331006 NCMIS Key Laboratory of RCSDS CAS and IRTSHUFE PCSIRT(IRT13077) supported by Graduate Innovation Fund of Shanghai University of Finance and Economics under Grant No.CXJJ-2011-429
关键词 Empirical process estimating equation influence curve Kaplan-Meier estimator kernel smoothing quantile residual lifetime right censored data 平滑估计 剩余寿命 右删失数据 估计性能 K-M估计 渐近正态性 分位数 医学科学
  • 相关文献

参考文献1

二级参考文献11

  • 1S. H. Lo,Y. P. Mack,J. L. Wang.Density and hazard rate estimation for censored data via strong representation of the Kaplan-Meier estimator[J]. Probability Theory and Related Fields . 1989 (3)
  • 2Kenneth S. Alexander.Rates of growth and sample moduli for weighted empirical processes indexed by sets[J]. Probability Theory and Related Fields . 1987 (3)
  • 3Sándor Cs?rg?,Lajos Horváth.The rate of strong uniform consistency for the product-limit estimator[J]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete . 1983 (3)
  • 4David M. Mason,Galen R. Shorack,Jon A. Wellner.Strong limit theorems for oscillation moduli of the uniform empirical process[J]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete . 1983 (1)
  • 5Murray D. Burke,Sándor Cs?rg?,Lajos Horváth.Strong approximations of some biometric estimates under random censorship[J]. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete . 1981 (1)
  • 6Mielniczuk,J.Some asymptotic properties of kernel estimators of a density function in case of censored data, Ann. Statistica . 1986
  • 7Stute,W.The oscillation behavior of empirical processes, Ann. Probab . 1982
  • 8Stute,W.A law of the logarithm for kernel density estimators, Ann. Probab . 1982
  • 9Zhou,Y.The rate convergence of oscillation modulus for product-limit processes. Chinese Science . 1995
  • 10Zhang,B.A law of the iterated logarithm for kernel estimator of hazard functions under random censorship, Scand. J. Statist. Appl . 1996

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部