期刊文献+

基于改进逻辑回归分类算法的LSB匹配隐写检测

Steganalysis of LSB Matching Based on Improved Logistic Regression Algorithm
下载PDF
导出
摘要 常见的采用高斯核支持向量机(Gaussian support vector machine,G-SVM)分类算法构建分类器的隐写检测方法对最低比特位(Least significant bit,LSB)匹配隐写算法均存在训练时间过长的问题。针对这一问题,提出一种改进逻辑回归分类算法,即L曲线截断正则化迭代重加权最小二乘(L-curve truncated-regularized iteratively re-weighted least squares,LTR-IRLS)算法。该算法采用L曲线法来确定适合于隐写特征的Tikhonov正则算法的近似最优参数,并通过实验寻找出符合隐写特征的截断牛顿算法收敛参数,从而提高了检测准确率;采用重加权最小二乘法计算最大似然估计,并通过截断牛顿法避免计算最小二乘中的海森矩阵,降低了计算量。理论分析与实验结果证明,针对LSB匹配隐写检测,LTR-IRLS分类算法在保证检测准确率优于G-SVM分类算法的情况下,极大地降低了训练时间,从而提高了检测速度。 Least significant bit(LSB)matching algorithm and common steganographic methods,which use Gaussian support vector machine(G-SVM)algorithm as the classifier,spend too much training time.Therefore,an improved logistic regression classifying algorithm named L-curve truncated-regularized iteratively re-weighted least squares(LTR-IRLS)is proposed.Firstly,near-optimal parameters of Tikhonov regularization are determined based on L-curve,and convergence parameters of the truncated Newton algorithm are obtained through experiments for increasing the detection accuracy.Secondly,iteratively reweighted least squares are utilized to search for the maximum loss expectancy and truncated Newton methods are utilized to avoid computing the Hessian matrix in the objective function,therefore reducing the computation amount greatly.Theoretical analysis and experimental results verify that LTR-IRLS can ensure the detection accuracy rate higher than G-SVM classifier,meanwhile reducing the training time and increaseing the detection speed.
出处 《数据采集与处理》 CSCD 北大核心 2015年第6期1160-1168,共9页 Journal of Data Acquisition and Processing
基金 天津市自然科学基金(15JCYBJC15500)资助项目
关键词 L曲线法 迭代重加权最小二乘 截断牛顿法 隐写检测 LSB匹配 L-curve iteratively re-weighted least squares(IRLS) truncated Newton methods steganalysis least significant bit(LSB)matching
  • 相关文献

参考文献20

  • 1Lou D C, Hu C H. LSB steganographic method based on reversible histogram transformation function for resisting statistical steganalysis[J]. Information Sciences, 2012,188(2) : 346-358.
  • 2Ker A D,Bas P, Bohme R, et al. Moving steganography and steganalysis from the laboratory into the real world[C] // Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security. Portland:ACM,201345-58.
  • 3刘学谦,平西建,张涛,徐旭.基于滤波复原的小波特征LSB匹配隐写分析方法[J].数据采集与处理,2010,25(4):505-511. 被引量:4
  • 4Fridrieh J,Kodovsky J. Steganalysis of LSB replacement using parity-aware features[C] // Information Hiding. Heidelberg, Berlin : Springer, 2013 : 31-45.
  • 5Ker A D,Lubenko I. Feature reduction and payload location with WAM steganalysis[C] // IST / SPIE Electronic Imaging. San Diego: International Society for Optics and Photonies, 2009 : 72540A-72540A-13.
  • 6Pevny T,Bas P,Fridrich ]. Steganalysis by subtraetive pixel adjacency matrix[J]. Information Forensics and Security, IEEE Transactions on,2010,5(2) :215-224.
  • 7钟尚平,徐巧芬,陈羽中,何凤英.一种基于LSB序列局部特征的通用隐写检测方法[J].电子学报,2013,41(2):239-247. 被引量:11
  • 8杨林聪,夏志华.针对空域LSB匹配的隐藏信息检测方法[J].中南大学学报(自然科学版),2013,44(2):612-618. 被引量:3
  • 9刘新平,薛希文.基于改进LS-SVM的随钻测量数据传输误码率预测[J].数据采集与处理,2014,29(5):790-794. 被引量:3
  • 10万宝吉,张涛,李文祥,等.基于多分类器融合的未知崩人率图像隐写仆糈肯洪[J].斯抿票售与钋硼.2014.29(5).740-756.

二级参考文献104

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部