期刊文献+

Dynamics of SVEIS epidemic model with distinct incidence

Dynamics of SVEIS epidemic model with distinct incidence
原文传递
导出
摘要 In this paper, we study the global dynamics of a SVEIS epidemic model with distinct incidence for exposed and infectives. The model is analyzed for stability and bifurcation behavior. To account for the realistic phenomenon of non-homogeneous mixing, the effect of diffusion on different population subclasses is considered. The diffusive model is analyzed using matrix stability theory and conditions for Turing bifurcation are derived. Numerical simulations support our analytical results on the dynamic behavior of tile model.
出处 《International Journal of Biomathematics》 2015年第6期99-117,共19页 生物数学学报(英文版)
关键词 SVEIS epidemic model DIFFUSION Turing bifurcation stability basic repro-duction number numerical simulation. 流行病模型 全局动力学 发病率 稳定性理论 扩散模型 非均匀混合 分岔行为 动态行为
  • 引文网络
  • 相关文献

参考文献41

  • 1R. Anderson, Population Dynamics of Infectious Disease (Chapman and Hall, New York, 1982).
  • 2R. Anderson and R. May, Population Biology of Infectious Disease (Springer-Verlag, Berlin, 1982).
  • 3J. L. Aron, Acquired immunity dependent upon exposure in an SIRS epidemic model, Math. Biosci. 88 (1988) 37-47.
  • 4S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size, J. Math. Biol. 28 (1990) 257-270.
  • 5V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci. 42 (1978) 41-61.
  • 6P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, Vol. 28 (Springer, Heidelberg, 1979).
  • 7J. Gani, Some problems in epidemic theory, J. Roy. Statist. Soc. Set. A 140 (1977) 323-347.
  • 8L. Q. Gao and H. W. Hethcote, Disease transmission models with density-dependent demographics, J. Math. Biol. 30 (1992) 717-731.
  • 9D. Greenhalgh, Q. J. A. Khan and F. I. Lewis, Hopf bifurcation in two SIRS density dependence epidemic models, Math. Comput. Model. 39 (2004) 1261 -1283.
  • 10L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species, Math. Comput. Model. 37 (2003) 87-108.
;
使用帮助 返回顶部