Dynamics of SVEIS epidemic model with distinct incidence
Dynamics of SVEIS epidemic model with distinct incidence
摘要
In this paper, we study the global dynamics of a SVEIS epidemic model with distinct incidence for exposed and infectives. The model is analyzed for stability and bifurcation behavior. To account for the realistic phenomenon of non-homogeneous mixing, the effect of diffusion on different population subclasses is considered. The diffusive model is analyzed using matrix stability theory and conditions for Turing bifurcation are derived. Numerical simulations support our analytical results on the dynamic behavior of tile model.
参考文献41
-
1R. Anderson, Population Dynamics of Infectious Disease (Chapman and Hall, New York, 1982).
-
2R. Anderson and R. May, Population Biology of Infectious Disease (Springer-Verlag, Berlin, 1982).
-
3J. L. Aron, Acquired immunity dependent upon exposure in an SIRS epidemic model, Math. Biosci. 88 (1988) 37-47.
-
4S. Busenberg and P. van den Driessche, Analysis of a disease transmission model in a population with varying size, J. Math. Biol. 28 (1990) 257-270.
-
5V. Capasso and G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci. 42 (1978) 41-61.
-
6P. C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, Vol. 28 (Springer, Heidelberg, 1979).
-
7J. Gani, Some problems in epidemic theory, J. Roy. Statist. Soc. Set. A 140 (1977) 323-347.
-
8L. Q. Gao and H. W. Hethcote, Disease transmission models with density-dependent demographics, J. Math. Biol. 30 (1992) 717-731.
-
9D. Greenhalgh, Q. J. A. Khan and F. I. Lewis, Hopf bifurcation in two SIRS density dependence epidemic models, Math. Comput. Model. 39 (2004) 1261 -1283.
-
10L. Han, Z. Ma and T. Shi, An SIRS epidemic model of two competitive species, Math. Comput. Model. 37 (2003) 87-108.
-
1Yanan Zhao,Daqing Jiang.The asymptotic behavior and ergodicity of stochastically perturbed SVIR epidemic model[J].International Journal of Biomathematics,2016,9(3):177-190. 被引量:1
-
2常强,杨艳芳,何英,冷梅,刘海港.三环非均匀混合偏振同轴矢量光束的聚焦特性[J].光学学报,2012,32(6):209-214. 被引量:5
-
3Yu Yang,Cuimei Zhang,Xunyan Jiang.Global stability of an SEIQV epidemic model with general incidence rate[J].International Journal of Biomathematics,2015,8(2):103-115. 被引量:1
-
4刘茂省,阮炯.A stochastic epidemic model on homogeneous networks[J].Chinese Physics B,2009,18(12):5111-5116.
-
5黄淑祥,徐史明,谢春红.THEORETICAL ANALYSIS TO A REACTION-DIFFUSION SYSTEM ARISING IN A DIFFUSIVE EPIDEMIC MODEL[J].Acta Mathematica Scientia,2004,24(2):175-184.
-
6Muhammad Altaf Khan,Yasir Khan,Qaiser Badshah,Saeed Islam.Global stability of SEIVR epidemic model with generalized incidence and preventive vaccination[J].International Journal of Biomathematics,2015,8(6):203-221. 被引量:1
-
7WANG Zhi-ping XU Rui ZHANG Shi-hua.Traveling Waves for an Epidemic Model with Vaccination and Nonlocal Diffusion[J].Chinese Quarterly Journal of Mathematics,2015,30(2):287-299.
-
8TIAN XIAOHONG.STABILITY ANALYSIS OF A DELAYED SIRS EPIDEMIC MODEL WITH VACCINATION AND NONLINEAR INCIDENCE[J].International Journal of Biomathematics,2012,5(6):43-60. 被引量:1
-
9Xu Wenxiong Yin Hongwei Xu Zongben.ASYMPTOTICAL ANALYSIS OF A REACTIONDIFFUSION EQUATIONS D-SIS EPIDEMIC MODEL[J].Annals of Differential Equations,2007,23(2):225-233.
-
10Aadil Lahrouz.Dynamics of a delayed epidemic model with varying immunity period and nonlinear transmission[J].International Journal of Biomathematics,2015,8(2):233-248. 被引量:1