期刊文献+

降低金属与n型Ge接触电阻方法的研究进展

Research Progress of Methods to Reduce Contact Resistance Between Metal and n-Type Ge
下载PDF
导出
摘要 Ge材料中n型杂质激活的电子浓度偏低,以及费米能级钉扎效应导致的金属与n型Ge接触电子势垒高度偏大,使金属与n型Ge接触电阻较大。基于Ge的材料特性,分析了缺陷对杂质浓度以及费米能级钉扎对电子势垒高度的影响;综述了提高Ge材料中n型掺杂电子浓度的方法,如激光退火、磷和锑共掺、循环离子注入/退火、氟钝化等;讨论了降低金属与n型Ge接触电子势垒高度的途径,即插入薄的界面层形成金属-界面层-Ge接触。电子浓度的提高,以及电子势垒高度的降低,有效地减小了金属与n型Ge接触电阻。 As the low electrically active concentration for n-type dopant in Ge material,and a large barrier height for the metal contact with the n-type Ge electrons caused by the strong Fermi level pinning,the contact resistance between metal and n-type Ge is bigger. Based on the material properties of Ge,the effects of the defects on the doping concentration and impact of the Fermi level pinning on the barrier height are analyzed. Methods of improving the electron concentration in Ge n-type doping are reviewed,such as laser annealing,co-doping of phosphorus and antimony,multiple implantation / multiple annealing and fluorine vacancy passivation. The approach that decreases the barrier height of metal-Ge contact such as inserting an ultrathin interfacial layer( IL) to form the metal-IL-Ge contact is discussed. The contact resistance between metal and n-type Ge is effectively reduced due to the improved electron concentration and the decreased barrier height.
出处 《半导体技术》 CAS CSCD 北大核心 2016年第1期10-15,31,共7页 Semiconductor Technology
基金 广东省自然科学基金资助项目(S2013010011833) 深圳市科技计划资助项目(JCYJ20120821162230170) 广东省高等学校优秀青年教师资助项目(Yq2014123)
关键词 锗(Ge) N型掺杂 金属-界面层-半导体接触 金属氧化物半导体场效应晶体管(MOSFET) 接触电阻 germanium(Ge) n-type doping metal-interfacial layer-semiconductor contact metal oxide semiconductor field effect transistor(MOSFET) contact resistance
  • 引文网络
  • 相关文献

参考文献32

  • 1LIAO M H,HUANG S C.The demonstration of promising Ge n-type multi-gate-field-effect transistors with the magnetic Fe Pt metal gate scheme[J].Applied Physics Letters,2015,107(9):092103-1-092103-3.
  • 2WU H,SI M W,DONG L,et al.Germanium n MOSFETs with recessed channel and S/D:Contact,scalability,interface,and drain current exceeding 1 A/mm[J].IEEE Transactions on Electron Devices,2015,62(5):1419-1426.
  • 3PILLARISETTY P.Academic and industry research progress in germanium nanodevices[J].Nature,2011,479(7373):324-328.
  • 4HELLINGS G,HELLINGS G,MITARD J,et al.High performance 70-nm germanium p MOSFETs with Boron LDD implants[J].IEEE Electron Device Letters,2009,30(1):88-90.
  • 5HUTIN L,LE ROYER C,DAMLENCOURT J F,et al.Ge OI p MOSFETs scaled down to 30-nm gate length with record off-state current[J].IEEE Electron Device Letters,2010,31(3):234-236.
  • 6CHENG C C,CHIEN C H,LUO G L,et al.Junction and device characteristics of gate-last Ge p-and n-MOSFETs with ALD-Al2O3gate dielectric[J].IEEE Transactions on Electron Devices,2009,56(8):1681-1689.
  • 7KUZUM D,KRISHNAMOHAN T,NAINANI A,et al.High-mobility Ge n-MOSFETs and mobility degradation mechanisms[J].IEEE Transactions on Electron Devices,2011,58(1):59-66.
  • 8SZE M.Physics of semiconductor device[M].3rd ed.USA:Wiley,2007:134-197.
  • 9CHUI C O,GOPALAKRISHNAN K,GRIFFIN P B,et al.Activation and diffusion studies of ion-implanted p and n dopants in germanium[J].Applied Physics Letters,2003,83(16):3275-3277.
  • 10CHUI C O,KULIG L,MORAN J,et al.Germanium n-type shallow junction activation dependences[J].Applied Physics Letters,2005,87(9):091909-1-091909-3.
;
使用帮助 返回顶部