期刊文献+

基于整体应变的柔顺机构多目标拓扑优化设计 被引量:3

Multi-objective topology optimization of design compliant mechanisms based on global strain
下载PDF
导出
摘要 针对传统方法在拓扑优化中会出现局部应变集中的缺陷,提出了一种基于整体有效应变的柔顺机构多目标拓扑优化方法.该方法不再以应变能最小作为目标函数,而是以整体有效应变最小来表征机构的刚度最大,从而将应变均匀地分布在整个系统中.考虑到柔顺机构对刚度和柔度的要求,以整体有效应变最小化和互应变能最大化为目标建立了多目标拓扑优化模型,在变密度法的基础上,利用妥协规划法研究了柔顺机构的多目标优化问题.其中,目标函数的灵敏度分析采用伴随矩阵求解方法,并采用移动渐进算法求解拓扑优化问题.最后,通过柔顺夹钳设计的数值算例来说明该方法的有效性和先进性.结果表明,该方法能够减少基于传统优化方法的结构中的局部大应变,从而有效提升柔顺机构的可靠性. To overcome the disadvantages of the traditional topology optimization method,aglobal effective strain based multi-objective topology optimization method of compliant mechanisms was presented.Under this method,aglobal effective strain function was minimized to represent structural rigidity,rather than minimizing the strain energy as the objective function.Thus the strain could be well distributed within the whole mechanism,instead of concentrating on compliant joints to cause a localized high strain.Considering the requirement of rigidity and flexibility on compliant mechanism,the multi-objective topology optimization problem that defined the objective as minimizing the global effective strain and maximizing mutual strain energy was established.Based on the solid isotropic material with penalization approach,the compromise programming method was used to study the multi-objective optimization problem of compliant mechanisms.The sensitivity of the objective functions was analyzed by the adjoint metrix method.The multi-objective topology optimization problem was solved using the algorithm of moving asymptotes.Finally,this method was further investigated and realized with a numerical example to show its correctness and effectiveness.The results show that the global effective strain based topology optimization method can effectively reduce localized high strain of the traditional method to improve the reliability of the compliant mechanism.
出处 《工程设计学报》 CSCD 北大核心 2015年第6期575-580,共6页 Chinese Journal of Engineering Design
基金 国家自然科学基金资助项目(51275486) 山西省回国留学人员科研资助项目(2014050) 山西省国际科技合作项目(2015081016)
关键词 柔顺机构 多目标拓扑优化 整体有效应变 应变能 compliant mechanism multi-objective topology optimization global effective strain strain energy
  • 相关文献

参考文献14

  • 1ANANTHASURESH G,KOTA S. Designing compliant mechanism[J]. Mechanical Engineering, 1995,117 ( 11 ) : 93 -96.
  • 2张宪民.柔顺机构拓扑优化设计[J].机械工程学报,2003,39(11):47-51. 被引量:58
  • 3FRECKER M I,ANANTHASURESH C- K. Topological synthesis of compliant mechanisms using multi criteria optimization[J]. Transactions of the ASME,Journal of Mechanical Design, 1997,119(2) :238 -245.
  • 4NISHIWAKI S, FRECKER M 1. Topology optimization of compliant mechanisms using the homogenization method[J]. International Journal for Numerical Methods in Engineering, 1998,42(3):535-559.
  • 5LARRY L Howell. Compliant mechanisms [M]. New York:John Wiley & Sons,2001 :1 -30.
  • 6刘少芳,张宪民,陈永健.基于均匀化方法的柔顺机构的拓扑优化设计[J].机械设计与研究,2004,20(6):31-33. 被引量:4
  • 7李兆坤,张宪民,陈金英,卞化梅,史利娟.柔顺机构几何非线性多目标拓扑优化设计[J].机械强度,2011,33(4):548-553. 被引量:13
  • 8SAXENA A,ANANTHASURESK G K. On an optimal property of compliant topologies[J]. Slructural and Mul tidisciplinary Optimization, 2000,19 ( 1 ) : 36-49.
  • 9LEE E,G-EA H C. A sIrain based topology optimization method for compliant mechanism design[J]. Structured and Multidisciplinary Optimization, 2014, 49 (2): 199- 207.
  • 10SINGMUND O. On the design of compliam mecha nisms using topology optimization [J].Mechanics of Structures and Machines,1997,25(4) :493- 524.

二级参考文献35

  • 1荣见华,傅建林.典型三维机械结构拓扑优化设计[J].机械强度,2006,28(6):825-832. 被引量:9
  • 2[1]Bendsoe M P, Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer methods in Applied mechanics and Engineering, 1988, 71:197~224
  • 3[2]Nishiwaki S, Frecker M I, Min S, et al. Topology optimization of compliant mechanisms using homogenization method. International Journal for Numerical Method Engineering, 1998, 42:535~559
  • 4[3]Yin L, Ananthasuresh G K. A novel formulation for the design of distributed compliant mechanisms. In:Proceedings of the 2002 ASME Design Engineering Technical Conferences, 2002, DETC2002/MECH-34213
  • 5[4]Nishiwaki S, Min S, Yoo J, et al. Optimal structural design considering flexibility. International Journal for Numerical Method Engineering, 2001, 190:4 457~4 504
  • 6[5]Frecker M I, Ananthasuresh G K, Nishiwaki S, et al. Topological synthesis of compliant mechanisms using multi-criteria optimization. Transactions of the ASME, Journal of Mechanical Design, 1997, 119(2):238~245
  • 7[6]Frecker M I, Kota S, Kikuchi N. Use of penalty function in topological synthesis and optimization of strain energy density of compliant mechanisms. In:Proceedings of the 1997 ASME Design Engineering Technical Conferences, 1997, DETC97/ DAC-3760
  • 8[7]Frecker M I, Kikuchi N, Kota S. Topology optimization of compliant mechanisms with multiple outputs. Structural Optimization, 1999, 17:269~278
  • 9[8]Frecker M I, Canfield S. Design of efficient compliant mechanisms from ground structure based optimal topologies. In:Proceedings of the 2000 ASME Design Engineering Technical Conferences, 2000, DETC2000/ MECH-14142
  • 10[9]Hetrick J A, Kota S. Topological and Geometric Synthesis of compliant mechanisms. In:Proceedings of the 2000 ASME Design Engineering Technical Conferences, 2000, DETC2000/ MECH-14140

共引文献67

同被引文献22

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部