期刊文献+

Effect of welding temperature and duration on properties of 7075 Al to AZ31B Mg diffusion bonded joint 被引量:15

焊接温度和焊接时间对7075铝合金和AZ31B镁合金扩散焊接头性能的影响(英文)
下载PDF
导出
摘要 7075 Al alloy and AZ31B Mg alloy were joined by diffusion welding technique at pressure 29 MPa with various welding temperatures and durations. Scanning electron microscopy examination, shear tests and microhardness evaluation were conducted on the samples interface to find out the effect of welding temperatures and durations on the weldability. The results demonstrate that the AZ31B Mg/7075 Al composite plates are bonded well and the intermetallic phases such as Al_(12)Mg_(17) and Al_(3)Mg_(2) within the joint zone form. It is found that due to the grain coarsening and the formation of brittle compounds, high welding temperatures and long welding durations result in a decrease of shear strength and increase of interfacial welding hardness. The minimum shear strength of 15 MPa along with the maximum microhardness of HV 176 are obtained for the diffusion couple processed at 450 °C for 120 min. It is revealed that enhancing the temperature and choosing appropriate holding time makes a remarkable increase of interfacial welding thickness. Increasing the welding temperature from 430 to 450 °C along with long welding duration(120 min) results in the increase of interfacial welding thickness by 26% where this value is 6% at the welding performed for 60 min. 在压力29 MPa、不同焊接温度和焊接时间下,采用扩散焊技术连接7075铝合金和AZ31B镁合金。对样品界面进行扫描电镜观察、剪切测试和显微硬度测试来研究焊接温度和焊接时间对可焊性的影响。结果表明:7075铝合金/AZ31B镁合金复合板材被很好地连接在一起,且在焊合区形成金属间化合物如Al_(12)Mg_(17)和Al_3Mg_2。由于晶粒粗化和脆性化合物的形成,升高焊接温度和延长焊接时间会导致剪切强度降低和界面焊接硬度增加。在450°C焊接120 min得到的扩焊接接头具有最小的剪切强度(15 MPa)和最大的显微硬度(HV 176)。提高焊接温度且选择合适的焊接时间能显著地提高焊接界面层厚度。将焊接温度从430°C提高到450°C,焊接时间为120 min时,焊接界面层厚度增加了26%,而当焊接时间为60 min时,界面层厚度增加了6%。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第1期85-92,共8页 中国有色金属学报(英文版)
关键词 Al alloy Mg alloy diffusion welding welding temperature welding duration Al合金 Mg合金 扩散焊 焊接温度 焊接持续时间
  • 相关文献

参考文献21

  • 1KEMAL A, YAKUP K, NIZAMETTIN K. Experimental study of diffusion welding/bonding of titanium to copper[J]. Materials and Design, 2012, 37: 356-368.
  • 2RAVISANKAR B, KRISHNAMOORTHI J, RAMAKRISHNAN S S, ANGELO P'C, Diffusion bonding of SU 263[J]. Material Processing Technology, 2009, 209(4): 2\35-2144.
  • 3AYDIN M, GURLER R, TURKER M. The diffusion welding of 7075AI-3%SiC particles reinforced composites[J]. Physics of Metals and Metallography, 2009, 107(2): 206-21O.
  • 4WU G Q, LI Z F, LUO G X , LI H Y, HUANG Z. Dynamic simulation of solid-state diffusion bonding[J]. Materials Science and Engineering A, 2007, 452: 529-535.
  • 5G. MAHENDRAN,V. BALASUBR AMANIAN,T. SENTHILVELAN.Influences of diffusion bonding process parameters on bond characteristics of Mg-Cu dissimilar joints[J].Transactions of Nonferrous Metals Society of China,2010,20(6):997-1005. 被引量:11
  • 6CHEN S D, SOH A K, KE F J. Molecular dynamics modeling of diffusion bonding[J]. Scripta Materialia, 2005, 52: 1\35-1140.
  • 7MAHENDRAN G, BABU S, BALASUBRAMANIAN V. Analyzing the effect of diffusion bonding process parameters on bond characteristics of Mg-AI dissimilar joints[J]. Journal of Materials Engineering and Performance, 2010, 19(5): 657-665.
  • 8EMEL T, JERRY E, GOULD B, JOHN C L. Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization[J]. Materials and Design, 2010, 31: 2305-2311.
  • 9SOMEKAWA H, WATANABE H, MUKAI T, HIGASHI K. Low temperature diffusion bounding in a super plastic AZ31 magnesium alloy[J]. Scripta Materialia, 2003, 48(9): 1249- 1254.
  • 10FERNANDUS M J, SENTHILKUMAR T, BALASUBRAMANIAN V. Developing temperature-time and pressure-time diagrams for diffusion bonding AZ80 magnesium and AA6061 aluminum alloys[J]. Materials and Design, 2011, 32: 1651-1656.

二级参考文献20

  • 1G. Mahendran,V. Balasubramanian,T. Senthilvelan.Developing diffusion bonding windows for joining AZ31B magnesium and copper alloys[J]. The International Journal of Advanced Manufacturing Technology . 2009 (7-8)
  • 2M. Balasubramanian,V. Jayabalan,V. Balasubramanian.A mathematical model to predict impact toughness of pulsed-current gas tungsten arc-welded titanium alloy[J]. The International Journal of Advanced Manufacturing Technology . 2008 (9-10)
  • 3MAHENDRAN G,BALASUBRAMANIAN V,SENTHILVELAN T.Developing diffusion bonding windows for joining AZ31B magnesium-AA2024 aluminium alloys. Journal of Materials and Design . 2009
  • 4MAHENDRAN G,BALASUBRAMANIAN V,SENTHILVELAN T.Developing diffusion bonding windows for joining AZ31B magnesium-copper dissimilar joints. International Journal of Advanced Manufacturing Technology . 2009
  • 5Huang Y,Ridley N,Humphreys F J,et al.Diffusion bonding of superplastic 7075 aluminium alloy. Journal of Materials Science . 1999
  • 6Orhan N,Khan TI,Eroglu M.Diffusion bonding of a microduplex stainless steel to Ti-6Al-4V. Scripta Materialia . 2001
  • 7Somekawa H,Watanabe H,Mukai T,et al.Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy. Scripta Materialia . 2003
  • 8HOU T H,SU C H,LIU W L.Parameters optimization of a nano-particle wet milling process using the Taguchi method, response surface method and genetic algorithm. Powder Technology . 2007
  • 9PILLING J,REDIELY N.Solid state bonding of superplastic AA7475. Journal of Materials Science . 1987
  • 10Grum,J,Slab,JM.The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni-Co-Mo surface layers. Journal of Materials Processing Technology . 2004

共引文献10

同被引文献159

引证文献15

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部