期刊文献+

局部视角无畸变的运动目标检测加速算法 被引量:1

A Motion Detection Accelerated Algorithm Based on Distortion Correcting of Local Field Angle
下载PDF
导出
摘要 针对大视场视频监控系统球形视场畸变严重以及要求实时处理等问题,提出了一种球形视场内局部视角无畸变快速展映方法,实现了大视场条件下运动目标检测的加速。打破现有算法先完成图像畸变校正,后进行目标检测的惯例;仅对球形视场内运动目标所在的局部视角图像进行畸变校正和识别等操作,大大减少了计算数据量,降低图像处理的时间开销,在保证识别准确的前提下,满足了监控系统实时在线处理的要求。最后,对不同分辨率、不同视场角的摄像机进行了多组畸变校正及运动目标检测实验,并将实验结果与现有算法进行了比较。实验结果验证了所提算法对大视场图像采集设备进行无畸变运动目标检测的可行性和高效性(加速5倍以上),为低成本大视场视频监控系统的实时、准确的目标检测、识别奠定了基础。 In large field video surveillance system, distortion is serious, and real-time processing is required, a local field angle distortion correcting method in spherical field of view (FOV) was pvoposed, in order to accelerate the motion detection under the conditions of the large field of view. Breaks down the established rule, the processing, such as distortion correction, recognition etc. , is just on the moving objects in local field angle, which greatly reduces the data quantity and processing time. Under the premise of ensuring the accurate recognition, it meets the requirements of real-time online processing. Finally, experimentize the distortion correction and motion detection algorithms for cameras with different resolutions and different FOV, then compares the test results with the general algorithm. Experimental results demonstrate the feasibility and the efficiency of this algorithm (speedup 5 times), so it laid the foundation for real-time, accurate target detection and identification of low-cost wide-angle video surveillance systems.
出处 《科学技术与工程》 北大核心 2016年第6期70-75,共6页 Science Technology and Engineering
关键词 运动目标检测 加速 畸变校正 局部视角 motion detection accelerate distortion correcting local field angle
  • 相关文献

参考文献9

  • 1Basharat A, Gritai A, Shah M. Learning object motion patterns for anomaly detection and improved object. CVPR, 2008:1-$.
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3丁莹,李文辉,范静涛,杨华民.基于Choquet模糊积分的运动目标检测算法[J].电子学报,2010,38(2):263-268. 被引量:13
  • 4Tsai R. An efficient and accurate camera calibration technique for 3D machine vision. Proceedings of Computer Vision and Pattern Recogni- tion, 1986:364-374.
  • 5Zhang Z. Flexible camera calibration by viewing a plane from un- known orientations. Proceedings of the 7th International Conference on Computer Vision. Greece: Corfu, 1999:666-63.
  • 6Ma S D. A serf-calibration technique for active vision systems. IEEE Transactions on Robotics & Automation, 1996, 12(1 ) :114-120.
  • 7胡占义,吴福朝.基于主动视觉摄像机标定方法[J].计算机学报,2002,25(11):1149-1156. 被引量:114
  • 8Faugeras O, Luong Q T, Maybank S. Camera self-calibration: theory and experiments. Proceedings of the 2nd European Conference on Computer Vision, Italy, 1992 , 321-334.
  • 9Maybank S, Faugeras O. A theory of self-calibration of a moving camera. International Journal of Computer Vision, 1992, 8 ( 2 ) : 123-151.

二级参考文献43

  • 1侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 2Horn BK, Schunk BG. Determining optical flow[ J ]. Artificial Intelligence, 1981,17(1-3) : 185 - 203.
  • 3Smith SM, Brady JM. ASSET-2: Real-time motion segmentation and shape tracking[ J]. IEEE, Trans, 1995, ICCV-17 (8) : 814 - 820.
  • 4Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation[ J]. Signal Processing, 1998, 66(2) :219 - 232.
  • 5Magee D. Tracking multiple vehicle using foreground, background and motion models[ J]. Image and Vision Computing, 2004,22(2) : 143 - 155.
  • 6T Ojala, M Pietikainen, T M Maenpaa. Multi-resolution grayscale and rotation invariant texture classification with local binary patterns[ J]. IEEE Trans, 2002, PAMI-24(7) :971 - 987.
  • 7M Grabisch, T Murofushi, M Sugeno. Fuzzy Measures and Integrals [ M ]. Theory and Applications. Studies in Fuzziness. Physical Verlag,2000. 314- 319.
  • 8Wallflower Dataset [ DB/OL ]. http://research. microsoft. com/users/jckrumm/WallFlower/Testlmages. htm, 1999-9- 20.
  • 9PETS Dataset [DB/OL]. http://www. cvg. rdg. ac. uk/ slides/pets. html, 2037-10-14.
  • 10Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203.

共引文献221

同被引文献16

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部