期刊文献+

基于改进谱聚类的医学图像分割算法

A new medical image segmentation algorithm based on improved spectral clustering
下载PDF
导出
摘要 为了解决基于像素难以有效分割的医学图像问题,提出一种改进谱聚类方法:一,将全局划分成具有强关联的子问题提高图像分割精度;二,传统基于欧氏距离度量的聚类容易陷入局部最优,提出流行距离构造样本相似矩阵,从而得到图像全局上的一致。最后通过对脑核磁共振图像分割验证算法的有效性。 To solve the problem of difficult to effective segmentation of medical images based on pixel, an improved spectral clustering method is proposed. Firstly, the global divide into sub-problems associated with a strong correlation to improve accuracy of image segmentation; Secondly, based on the traditional Euclidean distance metric easily fall into local optimum, proposed manifold distance constructed sample similar matrix, resulting in a consistent global image on. Finally, through by segmented the brain magnetic resonance image to validate the effectiveness of the algorithm.
出处 《大众科技》 2015年第12期6-8,共3页 Popular Science & Technology
关键词 医学图像 谱聚类 拉普拉斯特征映射 流行距离 Medical image spectral clustering Laplace feature map manifold distance
  • 引文网络
  • 相关文献

参考文献11

  • 1Herve, Lombaert, Darko et al.Laplacian Forests: Semantic Image Segmentation by Guided Bagging[J].in MICCAI, 2014,(8674):496-504.
  • 2陶新民,宋少宇,曹盼东,付丹丹.一种基于流形距离核的谱聚类算法[J].信息与控制,2012,41(3):307-313. 被引量:27
  • 3Fiedler M,et al.Algebraic connectivity of graphs[J].Czech, Math, J,1973, (23):298-305.
  • 4Shi J,Malik J,et al.Normalized cuts and image segmentation. [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):888-905.
  • 5Ng A Y, Jordan M l,Weiss Y.On spectral clustering: Analysis and an algorithm[C]//T.G.Dietterich,S.Becker, and Ghahramni, eds.Advances in Neural Information ProcessingSystems, Cam-bridge,MA,MITPress,2002,( 14): 849-856.
  • 6蔡晓妍,戴冠中,杨黎斌.谱聚类算法综述[J].计算机科学,2008,35(7):14-18. 被引量:189
  • 7Verma D,Meila M.A comparison of spectral clustering algorithms [M].Tectical report,2003.
  • 8杨锋,柴毅.基于改进谱聚类与粒子群优化的图像分割算法[J].微电子学与计算机,2013,30(7):51-54. 被引量:4
  • 9ZHOU D Y, BOUSQUET O,LAL T N,et al.Leaming with local and global consistency[C]//Proceedings of Advances in Neural Information Processing Systems 16.Cambridge: MIT Press, 2004:321-328.
  • 10Zhang Junping.Manifold learning and its applications:[Ph. D.dissertation][D].Beijing: Institute of Automation,Chinese Academy of Sciences,2003.

二级参考文献71

  • 1刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 2闫成新,桑农,张天序.基于图论的图像分割研究进展[J].计算机工程与应用,2006,42(5):11-14. 被引量:33
  • 3Chen W,Cao L, Qian J, et al. A 2-phase 2-D thresholding algorithm [J].Digital Signal Processing, 2010,20:1637-1644.
  • 4Huang D, Wang C. Optimal Multi-level Thresholding Using a Two-stage Ostu Optimization Approaeh[J].Pattern Recognition letters, 2009,30 : 275-284.
  • 5Tao W, J in H, Zhang Y. Image Thresholding Using Graph Cuts [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A, 2008,38(5) : 1181-1195.
  • 6Wu Z, Leahy R. An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation [J].IEEE Transactions on Pattern Analysis Machine Intelligence, 1993,15(11) : 1101-1113.
  • 7Shi J, Malik J. Normalized Cuts and Image Segmentation[J].IEEE Transactions on Pattern Analysis Machine Intelligence, 2000,22 (8) : 888-905.
  • 8Wang S, Siskind J. Image Segmentation with Ratio Cut [J]. IEEE Transactions on Pattern Analysis Machine Intelligence, 2003,25(6) : 675-690.
  • 9Ding C, H e X, Zha H, et al. A Min-Max Cut for Graph Partitioning and Data Clustering[C]//Proc. ICDM. 2001:107-114.
  • 10Chen W, Feng G,Jiang J, et al. Discriminant Cuts for Data Clustering and Analysis(in submitting).

共引文献220

相关主题

;
使用帮助 返回顶部