期刊文献+

具有超松弛因子的OSEM重建算法 被引量:5

OSEM Reconstruction with Overrelaxation
下载PDF
导出
摘要 创建了一种比 OSEM法更快收敛的、更灵活地适应临床要求的医学图象重建迭代算法 .通过引入超松弛因子 z改进现有的 OSEM图象迭代重建算法 ,在 z=1时 ,回复为通常的 OSEM,在 z>1时 ,合并引入非负约束和总计数归一化约束条件 ,保证迭代快速收敛 .使用计算机模拟数据和 SPECT心肌灌注投影数据对该算法进行验证 ,并同其他图象重建算法的结果进行了比较 ,该算法运算速度比同阶数的 OSEM快 1倍以上 ,且比同样迭代次数的更高阶数的 OSEM运算速度还要快 .该算法具有收敛速度快 ,使用灵活等优点 . An improved OSEM(ordered subset expectation maximization) reconstruction algorithm with OR(overrelaxation) parameter is studied in order to provide a more rapid and practical convergent iterative reconstruction algorithm in tomograph of nuclear medicine, such as SPECT(single photon emission computed tomograph) and PET(positron emission tomograph). Based on the additive version of OSEM, the new method introduces a constant overrelaxation parameter z>1 during each sub-iteration, and imposes the non-negativity constrain and total-counts normalization condition in subset iteration to overcome the negative image value problem and total-counts shift, in order to ensure its rapid and stable convergence. The method is reduced into ordinary OSEM when z=1. The reconstructed images were compared with those of standard OSEM, by both simulated phantom data and clinical SPECT myocardial perfusion data. The OR-OSEM is shown to be one time faster than OSEM's with same subset level, and is even faster than the OSEM with higher subset level. The results also show that this OR-OSEM method is more flexible in practice due to its continuous adjustable OR parameter.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2002年第8期814-817,共4页 Journal of Image and Graphics
关键词 超松弛因子 OSEM 核医学断层扫描仪 迭代算法 医学图像 图象重建 计算机模拟 Overrelaxation, Ordered subset expectation maximization
  • 相关文献

参考文献4

  • 1[1]Shepp L A, Vardi Y. Maximum likelihood reconstruction in emission tomography[J]. IEEE Trans. Med. Imag., 1982,MI-1 (3) : 113~ 122.
  • 2[2]Hudson H M, Larkin R S. Accelerrated image reconstruction using ordered subsets of projection data[J]. IEEE Trans. Med.Imag. , 1994,13(4):601~609.
  • 3[3]Peter S, Matthias E B, Gunnar B. Subsets and overrelaxation in iterative image reconstruction[J]. Phys. Med. Biol., 1999,44(5):1385~1396.
  • 4[4]Wallis J W, Miller T R. Rapidly converging iterative reconstruction algorithms in Single-Photon Emission Computed Tomography[J]. J. Nucl. Med., 1993,34(10):1793~1800.

同被引文献26

  • 1Gong Xing (Dept. of Biomedical Engineering, Zhejiang University, Hangzhou 310027).A TRUST REGION METHOD FOR MICROWAVE TOMOGRAPHY[J].Journal of Electronics(China),2001,18(2):181-184. 被引量:1
  • 2王宏钧,路宏年.代数重建技术中加权研究及其快速实现[J].计算机工程与设计,2006,27(15):2718-2719. 被引量:3
  • 3汪敏,胡小方.适用于SR-CT技术的新算法[J].实验力学,2006,21(4):467-472. 被引量:2
  • 4Shepp L A, Vardi Y. Maximum likelihood restoration for emission tomography[J]. IEEE Trans. Med. Imaging, 1982, 1(1): 113-122.
  • 5Veklerov E, Llacer J. Stopping rule for the MLE algorithm based on statistical hypothesis testing[J]. IEEE Trans. Med. Imaging, 1987, 6(4): 313-319.
  • 6Snyder D L, Miller M I, Thomas L J. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography[J]. IEEE Trans. Med. Imaging, 1987, 6(3): 228-238.
  • 7Lange K. Convergence of EM image reconstruction algorithms with Gibbs smoothing [J]. IEEE Trans. Med. Imaging, 1991, 10(4):439-446.
  • 8Alenius S, Ruotsalainen U. Generalization of median root prior reconstruction[J]. IEEE Trans. Med. Imaging, 2002, 21(11): 1413-1420.
  • 9Hsiao I T, Rangarajan A, Gindi G. A new convex edge-preserving median prior with applications to tomography[J]. IEEETrans. Med. Imaging, 2003, 22(5): 580-585.
  • 10Green P J. Bayesian reconstructions from emission tomography data using a modified EM algorithm[J]. IEEE Trans. Med. Imaging, 1990, 9(1): 84-93.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部