摘要
Micro-deformation behavior and mechanical properties of columnar-grained Fe-6.5 mass%Si alloy before and after warm rolling were investigated by means of micro-indentation and three-point bending tests.The results show that the columnar-grained Fe-6.5mass%Si alloy before warm rolling presents sink-in mode of micro-indentation,while pile-up mode with a number of arc-shaped deformation bands exists in the warm-rolled alloy.Compared with that of the alloy before warm rolling,the maximum bending fracture stress and maximum bending fracture deflection of the warm-rolled alloy are increased by 96% and 50%,respectively.The different micro-deformation behavior and mechanical properties of the columnar-grained Fe-6.5mass%Si alloy are ascribed to the changes of dislocation density,dislocation configuration and long-range order degree,which significantly improve the room temperature plasticity of the alloy after warm rolling.
Micro-deformation behavior and mechanical properties of columnar-grained Fe-6.5 mass%Si alloy before and after warm rolling were investigated by means of micro-indentation and three-point bending tests.The results show that the columnar-grained Fe-6.5mass%Si alloy before warm rolling presents sink-in mode of micro-indentation,while pile-up mode with a number of arc-shaped deformation bands exists in the warm-rolled alloy.Compared with that of the alloy before warm rolling,the maximum bending fracture stress and maximum bending fracture deflection of the warm-rolled alloy are increased by 96% and 50%,respectively.The different micro-deformation behavior and mechanical properties of the columnar-grained Fe-6.5mass%Si alloy are ascribed to the changes of dislocation density,dislocation configuration and long-range order degree,which significantly improve the room temperature plasticity of the alloy after warm rolling.
基金
Item Sponsored by Major State Basic Research Development Program of China(2011CB606300)
National Natural Science Foundation of China(51504023)
Fundamental Research Funds for the Central Universities of China(FRF-TP-15-051A2)
State Key Laboratory of Advanced Metals and Materials Foundation of China(2014-Z06)