摘要
提出了一种激光雷达(LiDAR)点云数据和航空影像的多尺度配准方法.该方法采用渐进式的配准策略,利用面形态学的方法构建尺度空间.配准过程分为两部分:在大尺度下利用面片特征进行配准;在小尺度下利用直线特征进行配准.渐进式的配准策略简化搜索匹配的直线特征的过程,提高了自动化程度,构建基于面形态学的尺度空间提高了配准元的提取精度.最后,通过实验验证了方法的可行性.
A multi-scale registration method was presented for aerial image and light detection and ranging(LiDAR)data.Multi-scale registration refers to a"from coarse to fine"and progressive registration strategy based on scale-space theory.Area morphology was used to build the scalespace.The methodology includes two parts:first,registration in coarse scale with surface patch and second,registration in fine scale with linear feature.In this proposed method,the search for matched lines was simplified as a result of progressive registration strategy.The automaticity was improved.Besides,the area morphological scale-space was used to improve the accuracy of extraction of the registration primitives.This method was verified with experiment.
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2016年第2期186-190,共5页
Transactions of Beijing Institute of Technology
基金
国家自然科学基金资助项目(61178072)