期刊文献+

An M-Objective Penalty Function Algorithm Under Big Penalty Parameters

An M-Objective Penalty Function Algorithm Under Big Penalty Parameters
原文传递
导出
摘要 Some classical penalty function algorithms may not always be convergent under big penalty parameters in Matlab software,which makes them impossible to find out an optimal solution to constrained optimization problems.In this paper,a novel penalty function(called M-objective penalty function) with one penalty parameter added to both objective and constrained functions of inequality constrained optimization problems is proposed.Based on the M-objective penalty function,an algorithm is developed to solve an optimal solution to the inequality constrained optimization problems,with its convergence proved under some conditions.Furthermore,numerical results show that the proposed algorithm has a much better convergence than the classical penalty function algorithms under big penalty parameters,and is efficient in choosing a penalty parameter in a large range in Matlab software.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第2期455-471,共17页 系统科学与复杂性学报(英文版)
基金 supported by the National Natural Science Foundation of China under Grant No.11271329
关键词 ALGORITHM constrained optimization problem M-objective penalty function stability. 罚函数法 罚参数 MATLAB软件 约束优化问题 函数算法 收敛性 约束函数 数值结果
  • 相关文献

参考文献27

  • 1Zangwill W I, Nonlinear programming via penalty function, Manangement Science, 1967, 13: 334-358.
  • 2Han S P and Mangasrian O L, Exact penalty function in nonlinear programming, Mathematical Programming, 1979, 17: 251-269.
  • 3Rosenberg E, Globally convergent algorithms for convex programming, Mathematics of Opera- tions Rresearch, 1981, 6: 437-443.
  • 4Rosenberg E, Exact penalty functions and stability in locally Lipschitz programming, Math. Programming, 1984, 30(3): 340-356.
  • 5Di Pillo G and Grippo L, An exact penalty function method with global conergence properties for nonlinear programming problems, Mathemathical Programming, 1986, 36: 1-18.
  • 6Zenios S A, Pinar M C, and Dembo R S, A smooth penalty function algorithm for network- structured problems, European Journal of Operational Research, 1993, 64: 258-277.
  • 7Pinar M C and Zenios S A, On smoothing exact penalty functions for convex constraints opti- mization, SIAM Journal on Optimization, 1994, 4: 486-511.
  • 8Mongeau M and Sartenaer A, Automatic decrease of the penalty parameter in exact penalty functions methods, European Journal of Operational Research, 1995, 83: 686-699.
  • 9Rubinov A M, Glover B M, and Yang X Q, Extended lagrange and penalty functions in continuous optimization, Optimization, 1999, 46: 327-351.
  • 10Rubinov A M, Glover B M, and Yang X Q, Decreasing functions with applications to penMization, SIAM Journal on Optimization, 1999, 10: 289-313.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部