期刊文献+

基于把关人行为的微博虚假信息及早检测方法 被引量:18

Misinformation Detection Based on Gatekeepers' Behaviors in Microblog
下载PDF
导出
摘要 目前微博已成为人们获取信息和发布信息的一个重要平台,然而微博也正成为虚假信息滋生和泛滥的温床.现有的方法主要基于分类算法来识别虚假信息,这些方法不能及早发现微博上流行的虚假信息.为了减少虚假信息对公众的影响,使微博在人们的生产和生活中发挥更积极的作用,文中提出一种基于把关人行为的微博虚假信息及早检测方法.该方法利用模型状态持续时间概率为Gamma分布的隐半马尔可夫模型来刻画信息转发者和评论者对流行的真实信息的把关行为,基于此来及早识别微博上流行的虚假信息.该方法分为模型训练和虚假信息检测两个阶段,在虚假信息检测阶段,计算每条信息在传播过程中产生的观测序列相对于模型的平均对数似然概率,实时更新每条信息的可信度,从而及早发现虚假信息,降低虚假信息的危害.使用采集的新浪微博数据集和Twitter数据集对文中的方法进行了测试,实验结果表明了该方法的有效性. Nowadays,microblog has become a popular social medium for information dissemination.However,it is also one of the main ways of misinformation transmission,due to the lack of an effective scheme for detection and countermeasures.Existing methods mainly detect misinformation based on classification algorithms.They can't identify the popular misinformation early.In order to reduce the harmfulness of misinformation and make microblog more user-friendly,in this paper a new method is presented for detecting misinformation based on gatekeepers' behaviors.In the proposed scheme,hidden semi-Markov model is used to describe the behaviors of the forwarders and reviewers of popularly true information.Gamma distribution is introduced to describe the state duration of the model.The proposed method includes a training phase and a detection phase.In the detection phase,the average log likelihood of every observation sequence is calculated,and the credibility value of information is updated in real time.So this method can identify the popular misinformation early and reduce the harmfulness of misinformation.An experiment based on real datasets of Sina Weibo and Twitter is conducted to evaluate this method.The experiment results validate the effectiveness of this method.
出处 《计算机学报》 EI CSCD 北大核心 2016年第4期730-744,共15页 Chinese Journal of Computers
基金 国家自然科学基金(61202271 61572145 61402119) 广东省高等学校优秀青年教师培养计划项目(GWTPSY201403) 国家社会科学基金项目(13CGL130) 教育部人文社会科学研究青年项目(14YJC87002113YJCZH258)资助
关键词 微博 虚假信息 把关人 隐半马尔可夫模型 社会媒体 社交网络 数据挖掘 microblog misinformation gatekeeper hidden semi-Markov model social media social networks data mining
  • 相关文献

参考文献3

二级参考文献42

  • 1李季,汪秉宏,蒋品群,周涛,王文旭.节点数加速增长的复杂网络生长模型[J].物理学报,2006,55(8):4051-4057. 被引量:51
  • 2刘群 李素建.基于《知网》的词汇语义相似度计算.计算语言学及中文信息处理,2007,31(7):59-76.
  • 3CNNIC(中国互联网信息中心).第29次中国互联网络发展状况统计报告[R].北京:中国互联网络信息中心(CNNIC),2012.
  • 4Li X, Meng W, Yu C. T-verifier: Verifying truthfulness of fact statements//Proeeedings of the 27th International Con- ference on Data Engineering. New York, USA, 2011: 63-74.
  • 5Yamamoto Y, Taro Tezuka T, Jatowt A. Supporting judg- ment of fact trustworthiness considering temporal and senti- mental aspeets//Proceedings of the Web Information Systems Engineering, Auckland, New Zealand, 2008:206 220.
  • 6Yamamoto Y, Tanaka K. Finding comparative facts and aspects for judging the credibility of uncertain facts// Proceedings of the Web Information Systems Engineering. Poznan, Poland, 2009:291-305.
  • 7Li X, Meng W, Yu T. Truthfulness analysis of fact state- ments using the web. IEEE Data Engineering Bulletin, 2011, 34(3): 3-10.
  • 8Fogg B J, Marshall J, Laraki L, et al. What makes web sites credible? A report on a large quantitative study//Proeeedings of the CHI 2001 Conferenee on Human Factors in Computing Systems. Seattle, WA, USA, 2001:61-68.
  • 9Fogg B J. Prominence-interpretation theory: Explaining how people assess credibility online//Proceedings of the CHI 2003 Conference on Human Factors in Computing Systems. Florida, USA, 2003: 722-723.
  • 10McKnight D H, Kacmar C J. Factors and effects of informa- tion credibility//Proceedings of the 9th International Confer- ence on Electronic Commerce. Minnesota, USA, 2007: 423-432.

共引文献23

同被引文献146

引证文献18

二级引证文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部