期刊文献+

柔顺机构PRR伪刚体模型的研究 被引量:4

PRR Pseudo-Rigid-Body Model of Compliant Mechanisms
下载PDF
导出
摘要 在已有伪刚体模型的基础上,将柔顺机构里大变形柔顺杆的轴向变形和横向变形的影响都考虑进去,增加伪刚体模型的自由度,提出一种具有两个转动副和一个移动副的多自由度伪刚体模型。该模型将4个不同长度的刚性杆件用一个拉压弹簧和两个不同刚度系数的扭转弹簧依次连接,进而建立柔顺机构中大变形柔顺杆的PRR伪刚体模型。模型的参数运用二维搜索和线性回归法求得。通过数值分析计算,将该伪刚体模型与1R、和PR伪刚体模型以及柔顺杆的末端轨迹进行分析对比,验证了PRR伪刚体模型能够更加精确地反映柔顺杆末端轨迹的变形特征。 Based on the Pseudo-Rigid-Body Model(PRBM),a multi-degree of freedom pseudo-rigid-body model is proposed by increasing freedom degree of Pseudo-Rigid-Body Model. The axial displacement and lateral displacement are presented by two revolute pairs and a prismatic pair. This model comprises four rigid links of different length which are connected by a spring and two torsion springs of different stiffness coefficient. The PRR pseudo-rigid-body model of compliant mechanism is developed. Model parameters are obtained by using the two-dimensional search method and the linear regression method. The deflection path and angle of the PRR Pseudo-Rigid-Body Model is analyzed through the numerical comparisons with the 1R,2R PRBM models and compliant links,that verify the PRR Pseudo-Rigid-Body Model can more accurately reflect the deformation characteristics of compliant link.
出处 《机械设计与制造》 北大核心 2016年第4期114-117,共4页 Machinery Design & Manufacture
基金 国家自然科学基金(51275486) 山西省回国留学人员科研资助项目(2014050) 山西省国际科技合作项目(2015081016)
关键词 PRR伪刚体模型 柔顺机构 轴向移动副 多自由度 Pseudo-Rigid-Body Model Compliant Mechanism Axial Prismatic Pair Multi-Degree of Freedom
  • 相关文献

参考文献12

  • 1HOWELL L L.Compliant Mechanisms[M].New York:John Wiley&Sons,2001:1-30.
  • 2HOWELL L L,JENSEN B D.The modeling of cross-axis flexural pivots[J].Mechanism and Machine Theory,2002,37(5):461-476.
  • 3余跃庆,周鹏.柔顺机构PR伪刚体模型[J].北京工业大学学报,2013,39(5):641-647. 被引量:9
  • 4HOWELL L L,MIDHA A.Parametric deflection approximations for end loaded large deflection beams in compliant mechanisms[J].ASME Transactions,Journal of Mechanical Design,1995,117(3):156-165.
  • 5MIDHA A,HOWELL L L.A method for the design of compliant mechanism with small-length flexural pivots[J].ASME Transactions,Journal of Mechanical Design,1994,116(1):280-289.
  • 6SU Hai-jun.Apseudorigid-body 3R model for determining large deflection of cantilever beams subject to Tip Loads[J].Journal of Mechanisms and Robotics,2009(1):021008-1-9.
  • 7冯忠磊,余跃庆,王雯静.模拟柔顺机构中柔顺杆件末端特征的2R伪刚体模型[J].机械工程学报,2011,47(1):36-42. 被引量:24
  • 8HOWELL L L,MIDHA A.Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large deflection compliant mechanisms[J].ASME Transactions,Journal of Mechanical Design,1996,118(1):126-131.
  • 9余跃庆,徐齐平,周鹏.复合载荷作用下柔顺机构的PR伪刚体新模型[J].机械工程学报,2013,49(15):9-14. 被引量:15
  • 10SAGGERE L,KOTA S.Synthesis of planar,compliant four-bar mechanisms for compliant-segment motion generation[J].ASME Transactions,Journal of Mechanical Design,2001,123(4):535-541.

二级参考文献37

  • 1HOWELL L L. Compliant mechanisms[M]. New York: John Wiley & Sons, 2001 : 1-30.
  • 2HOWELL L L, JENSEN B D. The modeling of cross-axis flexural pivots[J]. Mechanism and Machine Theory, 2002, 37(5): 461-476.
  • 3JENSEN B D, HOWELL L L, SALMON L G.Design of two-link, in-plane, bistable compliant micro-mechanisms [J]. ASME Transactions, Journal of Mechanical Design, 1999, 121(3): 416-423.
  • 4HOWELL L L, MIDHA A. Parametric deflection approximations for end-loaded, large-deflection beams in compliant mechanisms[J]. ASME Transactions, Journal of MechanicalDesign, 1995, 117(1): 156-165.
  • 5MIDHA A, HOWELL L L. Evaluation of equivalent spring stiffness for use in a pseudo-rigid-body model of large deflection compliant mechanisms[J]. ASME Transactions, Journal of Mechanical Design, 1996, 118(1): 126-131.
  • 6SAGGERE L, KOTA S. Synthesis of planar, compliant four-bar mechanisms for compliant-segment motion generation[J]. ASME Transactions, Journal of Mechanical Design, 2001, 123(4): 535-541.
  • 7SU H J. A load independent pseudo-rigid-body 3R model for determining large deflection of beams in compliant mechanisms[C]// Proceedings of 2008 ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, August3-6, 2008, Brooklyn, NewYork: ASME, 2008: 109-121.
  • 8HOWELL L L. Compliant mechanisms[M]. New York: McGraw Hill, 2001.
  • 9FRECKER M, KIKUCHI N. Topology optimization of compliant mechanisms with multiple outputs[J]. Structural Optimization, 1999, 17(4): 269-278.
  • 10SAXCENA A, ANANTHASURSH G K. An optimality criteria approach for the topology synthesis of compliant mechanisms[C]//Proceeding of Design Engineering Technical Conferences, Atlanta, September 13, 1998. New York: ASME, 1998: 1-13.

共引文献41

同被引文献23

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部