期刊文献+

基于稀疏编码直方图的TSM识别场景文本算法 被引量:3

Histograms of sparse codes based TSM for scene text recognition
下载PDF
导出
摘要 基于部件的树结构模型(TSM)使用的底层特征梯度直方图(HOG)对文字特征表达性不强,且降维时易造成信息丢失。针对该问题,构建以稀疏编码直方图(HSC)为底层特征的基于部件的树结构模型(HSC-TSM)识别场景文本。将K-SVD学习字典用于计算稀疏编码,逐像素地将稀疏编码聚合成HSC,描述文字的局部外观信息;通过奇异值分解对HSC进行降维,避免信息丢失。HSC-TSM在数据集ICDAR 2003上对各类文字的识别率比TSM高3.08%-10.28%,在数据集ICDAR 2003和SVT上的单词识别率分别提升了5.30%和3.62%。 The histograms of gradient(HOG)as low-level feature of the part-based tree-structured model(TSM)is not representative for characters,and it can easily lead to the loss of information when reducing the dimensions.To solve the problem,histograms of sparse codes(HSC)as low-level feature of the part-based tree-structured model(HSC-TSM)was constructed to recognize scene text.Sparse codes were computed with dictionaries learnt from data using K-SVD,and per-pixel sparse codes were aggregated into HSC,the local appearance information was better described.The dimensions of HSC were reduced by singular value decomposition to avoid the loss of information.The recognition rates of HSC-TSM recognizing various categories of characters on ICDAR 2003 dataset are 3.08%-10.28% higher than that of TSM,the word recognition rates on ICDAR 2003 and SVT dataset are respectively increased by 5.30% and 3.62%.
出处 《计算机工程与设计》 北大核心 2016年第4期988-992,1090,共6页 Computer Engineering and Design
基金 2014年国家科技支撑计划基金项目(2014BAH30B01)
关键词 场景文本识别 基于部件的树结构模型 奇异值分解 稀疏编码直方图 scene text recognition part-based tree-structured model singular value decomposition histograms of sparse codes
  • 引文网络
  • 相关文献

参考文献12

  • 1Shi Cunzhao,Wang Chunheng,Xiao Baihua,et al.Scene text recognition using part-based tree-structured character detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Portland:IEEE Press,2013:2961-2968.
  • 2Shi Cunzhao,Wang Chunheng,Xiao Baihua,et al.End-toend scene text recognition using tree-structured models[J].Pattern Recognition,2014,47(9):2853-2866.
  • 3张伟伟,汤光明,孙怡峰,李晓利.基于DPM的自然场景下汉字识别方法[J].计算机应用研究,2013,30(3):957-960. 被引量:3
  • 4Yao Cong,Bai Xiang,Shi BG,et al.Strokelets:A learned multi-scale representation for scene text recognition[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Columbus:IEEE Press,2014:4042-4049.
  • 5Juneja M,Vedaldi A,Jawahar CV,et al.Blocks that shout:Distinctive parts for scene classication[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Portland:IEEE Press,2013:923-930.
  • 6袁海东,马华东,黄晓冬.基于梯度与粗糙度的视频文本检测与定位[J].电子学报,2008,36(8):1660-1664. 被引量:9
  • 7Ren XF,Ramanan D.Histograms of sparse codes for object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Portland:IEEE Press,2013:3246-3253.
  • 8Felzenszwalb P,Girshick R,Mcallester D,et al.Object detection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645.
  • 9Yang Y,Ramanan D.Articulated pose estimation with flexible mixtures-of-parts[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,Colorado:IEEE Press,2011:1385-1392.
  • 10Wang K,Babenko B,Belongie S.End-to-end scene text recognition[C]//Proceedings of IEEE International Conference on Computer Vision,Barcelona:IEEE Press,2011:1457-1464.

二级参考文献27

  • 1高丽,杨树元,夏杰,王诗俊,梁军利,李海强.基于标记的Watershed图像分割新算法[J].电子学报,2006,34(11):2018-2023. 被引量:34
  • 2Y K Lim, S H Choi, S W Lee. Text extraction in MPEG compressed video for content-based indexing[ A] .The 15th International Conference on Pattern Recognition [ C ]. Barcelona, Spain, 2000,4:409 - 412.
  • 3Y Zhong,H J Zhang, A K Jain. Automatic caption localization in compressed video[ J]. IEEE Tram on Pattern Analysis and Machine Intenigenee, 2000,22(4) :385 - 392.
  • 4H P Li, D Doermann, 0 Kia. Automatic text detection and tracking in digital video[ J]. IEEE Trans on Image Processing, 2000,9(1):147- 156.
  • 5V Wu, R Maranatha, E M Riseman. Textfmder: an automatic system to daeet and recognize text in images[ J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1999,21 (11) :1224- 1229.
  • 6A K Jian, S Bhattacharjee. Text segmentation using gabor filters for automatic document processing[ J] .Machine Vision Application, 1992,5 (3) : 169 - 184.
  • 7A K Jain, B Yu. Automatic text location in images and video frames[ A ]. The 14th International Conference on Pattern Recognition[ C]. Brisbane,Australia, 1998. 1497 - 1499.
  • 8V Y Mariano,R Kasturi. Locating uniform-colored text in video frames [ A ]. The 15th International Conference on Pattern Recognition[ C ]. Barcelona, Spain, 2000.539 - 542.
  • 9X W Wang, X Q Ding, C S Liu. Character extraction and recognition in natural scene images[ A ]. The 6th Intemational Conference on Document Analysis and Recognition[ C] .Seattle, WA, USA, 2001. 1084 - 1088.
  • 10A Wernicke,R Lienhart. On the segmentation of text in videos [ A]. IEEE International Conference on multimedia and Expo [C]. NY,USA,2000. 1511 - 1514.

共引文献10

同被引文献16

引证文献3

二级引证文献4

;
使用帮助 返回顶部