期刊文献+

Highly Sensitive Filter-Less Fluorescence Detection Method Using an Avalanche Photodiode

Highly Sensitive Filter-Less Fluorescence Detection Method Using an Avalanche Photodiode
下载PDF
导出
摘要 Herein we report a highly sensitive filter-less fluorescence detection method using an APD (avalanche photodiode). Experimental measurements using the proposed APD-based highly sensitive fluorescence detection method exhibits the sensing capability to detect an excitation light and a fluorescence light without band pass filter or grating. The principle of this APD-based highly fluorescence detection method is used the varying multiplication ratio that is decided by wavelength. The wavelength controls running distance of photo-excited carrier by absorption coefficients, and this element decide multiplication ratio on fixed high electrical field. In fluorescence detection, they use two types of light: excitation light and fluorescence light. These lights have different wavelengths and make different multiplication ratio as well. Thus this method can separate two types of light easily by using multiplication ratios of APD without band pass filters/gratings. In this experiment, the excitation light is LED (light emitting diode) and fluorescence light occurs from FITC (fluorescein isothiocyanate) with ethanol. The FITC concentration changes from 0.1 μmol/L to 10 mmol/L. In this measurement circuit, we employ APD (S2385), power supply voltage, and pico ampere current meter. As a result, these lights are correctly separated by using multiplication ratio with calculation at every concentration FITCs.
出处 《Journal of Energy and Power Engineering》 2016年第4期268-273,共6页 能源与动力工程(美国大卫英文)
关键词 Avalanche photodiode filter-less fluorescence. 雪崩光电二极管 荧光检测法 过滤器 敏感 异硫氰酸荧光素 波长控制 实验测量 FITC
  • 相关文献

参考文献8

  • 1Jun, L., Hongfei, Y., Kemin, W., Weihong, T., and Xingwang, Z. 2007. "Hairpin Fluorescence DNA Probe for Real-Time Monitoring of DNA Methylation." Analytical Chemistry 79 (3): 1050-6.
  • 2Xavier, L. G., Christian, S., Nicole, D., Gregor, J., and Marc, S. 2012. "Highly Fluorescent Silver NanoclustersStabilized by Glutathione: A Promising Fluorescent Label for Bioimaging." Nano. Research 5 (6): 379-87.
  • 3John, E., Hobbie, R., Daley, J., and Jasper, S. 1977. "Use of Nuclepore Filters for Counting Bacteria by Fluorescence Microscopy." Applied and Environmental Microbiology 33 (5): 1225-8.
  • 4Li, S., Linxiao, Y., Florian, S., Radian, P., Vanessa, T., Michael, B., Dagmar, G., and Ulrich, G. N. 2012. "Microwave-Assisted Rapid Synthesis of Luminescent Gold Nanoclusters for Sensing Hg2+ in Living Cells Using Fluorescence Imaging." Nanoseale 14 (4): 4155-60.
  • 5Yuki, M., Kazuaki, S., Hidekuni, T., and Makoto, I. 2006. "The Fabrication of Filter-Less Fluorescence Detection Sensor Array Using CMOS Image Sensor Technique."Sensors andActuators A 12 (1): 66-70.
  • 6Christin, B., Jens, K., Heinrich, G., and Hubert, L. 2014. "Large Field of View MEMS-Based Confocal Laser Scanning Microscope for Fluorescence Imaging." Optik 125 (2): 876-82.
  • 7Marcela, M. W., Cheng, W., Chuan-De, W., and Wenbin, L. 2012. "A Chiral Porous Metal? Organic Framework for Highly Sensitive and Enantioselective Fluorescence Sensing of Amino Alcohols." Journal of the American Chemical Society 134 (22): 9050-3.
  • 8Myung-Jae, L., Holger, R., and Woo-Young, C. 2012. "Effects of Guard-Ring Structures on the Performance of Silicon Avalanche Photodetectors Fabricated with Standard CMOS Technology." IEEE Electron Device Letters 33 (1): 80-2.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部