期刊文献+

基于仿视觉细胞模型的立体图像质量评价方法 被引量:9

Stereoscopic Image-Quality-Assessment Method Based on Visual Cell Model
原文传递
导出
摘要 在观看立体图像时,人类视觉系统(HVS)以人眼视网膜细胞为媒介接收、传输和理解双目信息,基于此提出了一种仿视觉细胞模型的立体图像质量评价(SIQA)方法。以视网膜细胞特性为基础,模仿HVS对简单细胞和复杂细胞进行建模;双目信息经简单-复杂细胞模型处理得到双目融合视点图(BFVM)和双目细胞差异图(BCDM),采用多尺度结构相似度(MSSIM)算法分别对原始、失真立体图像的BFVM和BCDM进行双目融合评价(BFQA)和双目立体感评价(BSPA);对BFQA和BSPA的评价值进行加权融合得到最终评价值。实验结果表明,该方法的Pearson线性相关系数在0.94以上,Spearman秩相关系数在0.93以上,该模型符合人眼视觉特性,能够较好地预测立体图像质量。 Retinal cells of human visual system(HVS) are used as a medium to receive, transmit and understand binocular information when stereo images are viewed. A new stereo image-quality-assessment(SIQA) algorithm aiming to imitate retinal cells is proposed. HVS is mimicked by modeling simple cells and complex cells on the basis of the retinal cell characteristics. Binocular fusion view map(BFVM) and binocular cell-based disparity map(BCDM)are obtained via the binocular information processing of the simple-complex cell models. Based on the multiscale structural similarity(MSSIM) method, the binocular fusion quality assessment(BFQA) and binocular stereo perception assessment(BSPA) are respectively implemented to the original or distorted stereo images. The results of BFQA and BSPA are combined to describe the final quality of stereo images. The experimental results demonstrate that the overall Pearson linear correlation indicator reaches 0.94, Spearman rank order correlation coefficient reaches0.93, which indicate that the proposed model is well consistent with human perception, and also well predict the stero image quality.
出处 《激光与光电子学进展》 CSCD 北大核心 2016年第4期80-87,共8页 Laser & Optoelectronics Progress
基金 浙江省自然科学基金(LY15F010005)
关键词 图像处理 立体图像质量评价 人类视觉系统 视觉细胞模型 双目融合 简单-复杂细胞 image processing stereo image quality assessment human visual system visual cell model binocular fusion simple-complex cells
  • 相关文献

参考文献20

  • 1Lee K, Lee S. 3D perception based quality pooling: stereopsis, binocular rivalry and binocular suppression[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(3): 533-545.
  • 2Bensalma R, Larabi C. A perceptual metric for stereoscopic image quality assessment based on the binocular energy[J]. Multidimensional Systems and Signal Processing, 2013, 24(2): 281-316.
  • 3Shao F, Li K, Lin W, et al.. Using binocular feature combination for blind quality assessment of stereoscopic images[J]. IEEE Signal Processing Letters, 2015, 22(10): 1548-1551.
  • 4蒋刚毅,黄大江,王旭,郁梅.图像质量评价方法研究进展[J].电子与信息学报,2010,32(1):219-226. 被引量:177
  • 5Chandler D M, Hemami S S. VSNR: A wavelet-based visual signal-to-noise ratio for natural images[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2284-2298.
  • 6Wang Z, Bovik A C, Sheikh H R, et al.. Image quality assessment: From error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 7Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]. Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, 2003, 2: 1398-1402.
  • 8Sheikh H R, Bovik A C. Image information and visual quality[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 3: III709-III712.
  • 9Chen M J, Su C C, Kwon D K, et al.. Full- reference quality assessment of stereopairs accounting for rivalry[J]. Signal Processing: Image Communication, 2013, 28(9): 1143-1155.
  • 10Hewage C T E R, Martini M G. Edge-based reduced-reference quality metric for 3D video compression and transmission [J]. IEEE Journal of Selected Topics in Signal Processing, 2012, 6(5): 471-482.

二级参考文献122

  • 1马苗,郝重阳,韩培友,樊养余,黎新伍.基于灰色关联分析的图像保真度准则[J].计算机辅助设计与图形学学报,2004,16(7):978-983. 被引量:22
  • 2王涛,高新波,张都应.一种基于内容的图像质量评价测度[J].中国图象图形学报,2007,12(6):1002-1007. 被引量:15
  • 3VQEG. Final report from VQEG on the validation of objective models of video quality assessment[OL]. (2000-3-15). Http://www.its.bldrdoc.gov/vqeg/projects/fr tv _phaseII/do wnloads/VQEGII_Final_Peport.pdf.
  • 4Wang Z, Liaalg L, and Alan C B. Video quality assessment using structural distortion measurement[C]. International Conference on Image Processing, Rochester, NY, USA, 2002, 3: 65-68.
  • 5Yu Z, Wu H R, and Winkler S, et al.. Vision-model-based impairment metric to evaluate blocking artifact in digital video[J]. Proceeding of the IEEE, 2002, 90(1): 154-169.
  • 6Nill N B and Bouzas B H. Objective image quality measure derived from digital image power spectra[J]. IEEE Signal Processing Letter, 2002, 9(3): 388-392.
  • 7Wang Z, Alan C B, and Hamid R S. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
  • 8ITU-R Recommendation BT.500-10. Methodology for the subjective assessment of the quality of the television pictures[S], 2000.
  • 9Baroncint V. New tendencies in subjective video quality evaluation[J]. IEICE Transactions on Fundamentals, 2006, 89(11): 2933-2937.
  • 10Hoffmann H, Itagaki T, and Wood D, et al.. A novel method for subjective picture quality assessment and further studies of HDTV formats[J]. IEEE Transctions on Broadcasting, 2008, 54(1): 1-13.

共引文献274

同被引文献32

引证文献9

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部