期刊文献+

基于像素级图像融合的单幅图像去雾算法 被引量:2

Novel Algorithm for Single Image Dehazing Based on Image Fusion at Pixel Level
下载PDF
导出
摘要 单幅图像去雾是计算机视觉领域的一个重要研究课题,基于图像融合思想,提出一种新的单幅图像去雾算法.首先计算大气光和中值暗原色先验的差值绝对值来判断有雾图像中是否含有明亮区域,获得对天空、白色建筑物等明亮区域透射率更精确的估计,并通过该透射率计算第一幅待融合图像;然后利用大气散射模型的一般形式,求解出第二幅待融合图像;最后,通过计算融合系数,将两幅去雾图像进行像素级融合,得到最终的去雾图像.该方法可以有效的改善天空区域颜色失真,去除Halo效应.实验结果表明,所提方法能较好的实现去雾,并保留图像细节和结构信息. Single image dehazing is an important topic in the computer vision. A novel algorithm for single image dehazing based on image fusion at pixel level is proposed. Firstly, a transmission map, which is more accurate on bright areas in the image, is obtained by computing the discrepancy between the median dark channel prior and the skylight, and the first input image for fusion is derived by the transmission map. Secondly, the other input image for fusion is derived using general atmospheric scattering model. Finally, the dehazed image is restored based on image fusion at pixel level using the above input images. The proposed method can effectively improve the sky areas distortion, remove the halo effect. Experiments demonstrate that the proposed method would better remove the haze, preserve the details and structure information of the images.
出处 《闽南师范大学学报(自然科学版)》 2016年第1期46-53,共8页 Journal of Minnan Normal University:Natural Science
基金 福建省自然科学基金(2013J01028) 福建省计算机应用技术和信号与信息系统研究生教育创新基地项目([2008]114号) 福建省数学类研究生教育创新基地(313009) 福建省中青年教师教育科研项目(科技)(JA15302)
关键词 图像去雾 图像融合 中值暗原色先验 大气散射模型 Halo效应 image dehazing image fusion median dark channel prior atmospheric scattering model halo effect
  • 相关文献

参考文献12

  • 1Tan R T. Visibility in bad weather from a single image[C]//Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, New Jersey, USA: IEEE, 2008: 1-8.
  • 2Fattal R. Single image dehazing[C]//Proeeeding of ACM Transactions on Graphics, New York, USA: ACM Transaction on Graphics (TOG), 2008, 27(3): 72-79.
  • 3Fattal R. Dehazing using color-lines[J]. ACM Transactions on Graphics, 2014, 34(1): 1301-1314.
  • 4Sulami M, Glatzer I, Fattal R, et al. Automatic recovery of the atmospheric light in hazy images[C]//Proceedings of the 2014 IEEE International Conference on Computational Photography (ICCP), New Jersey, USA: IEEE, 2014:1-11.
  • 5Tarel J P, Hautiere N. Fast visibility restoration from a single color or gray level image[C]//Proceedings of the 12th IEEE Inter- national Conference on Computer Vision, New Jersey, USA: IEEE, 2009: 2201-2208.
  • 6He Kaiming, Sun Jian, Tang Xiaoou. Single image haze removal using dark channel prior[J]. IEEE Transactions on Pattern An- alysis and Machine Intelligence, 2011, 33(12): 2341-2353.
  • 7He Kaiming, Sun Jian, Tang Xiaoou. Guided image filtering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013. 35(6): 1397-1409.
  • 8张小刚,唐美玲,陈华,汤红忠.一种结合双区域滤波和图像融合的单幅图像去雾算法[J].自动化学报,2014,40(8):1733-1739. 被引量:42
  • 9Gibson K B, Vo D T, Nguyen T Q. An investigation of dehazing effects on image and video coding[J]. IEEE Transactions on Image Processing, 2012, 21(2): 662-673.
  • 10李大鹏,禹晶,肖创柏.图像去雾的无参考客观质量评测方法[J].中国图象图形学报,2011,16(9):1753-1757. 被引量:77

二级参考文献30

  • 1Tan R T. Visibility in bad weather from a single image [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattem Recognition. New York, USA: IEEE,2008 : 1- 8.
  • 2Fattal R Single image dehazing [ C ]// Proceedings of ACM SIGGRAPH 2008. New York, USA : ACM,2008 : 1-9.
  • 3KaimingH, Jian S, Xiaoou T. Single image haze removal using dark channel prior [ C ]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE ,2009 : 1956-1963.
  • 4Jean- Philippe T, Nicolas H. Fast visibility restoration from a single color or gray level image [ C ]//Proceeding of IEEE 12th International Conference on Computer Vision. New York, USA: IEEE,2009:2201-2208.
  • 5姚波,黄磊,刘昌平.去雾增强图像质量客观比较方法的研究[C]//全国模式识别学术会议.纽约:IEEE,2009:1-5.
  • 6Sheikh H R, Bovik A C, Cormack L Noreference quality assessment using natural scene statistics :_JPEG2000 [ J ]. IEEE Transactions on image Processing ,2005,14 ( 11 ) : 1918-1927.
  • 7Zhou W, Bovik A C, Sheikh H R, et al. Image quality assessment : from error visibility to structural similarity[ J]. IEEE Transactions on Image Processing,200g, 13 (4) :600-612.
  • 8Carnec M,Le Callet P, Barba D. Objective quality assessment of color images based on a generic perceptual reduced reference [ J]. Image Communication,2008,23 (4) :239-256.
  • 9Chambah M, Rizzi A, Gatta C, et al. Perceptual approach for unsupervised digital color restoration of cinematographic archives [C]//Proceedings of SPIE Conference on Color Imaging VIII: Processing, Hardcopy, and Applications. Washington, USA : SPIE, 2003.5008 :138-149.
  • 10Jean-Philippe T. Single Image Visibility Restoration Comparison [ EB/OL]. [ 2010- 08- 07 ] . http://perso, lcpc. fr/tarel, jeanphilippe/visibility/.

共引文献165

同被引文献12

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部