期刊文献+

基于互联网与遥感的网络环境舆情联动监控技术应用 被引量:2

Environmental Public Opinion Monitoring by Integrating Internet Search Technology with Remote Sensing Technology
下载PDF
导出
摘要 本文提出了一种基于互联网与遥感的网络环境舆情联动监控技术方法。该方法面向环境管理部门在及时、准确掌握网络上环境舆情情况的工作需要,首先利用网络舆情搜索平台及时主动地发现互联网上的环境舆情信息,然后针对发现的重点舆情,利用遥感技术开展深入的舆情遥感监测与核查,编制相关监测报告并上报管理部门,辅助管理部门进行环境监管。该技术方法链接了传统的基于互联网的舆情监控业务与基于遥感的环境监测业务,构建成了基于互联网与遥感的网络环境舆情监控与遥感核查的主动式、一体化联动工作机制,为管理部门提供更有效的舆情监控服务。 In this paper,in order to grasp the environmental public opinion in interment promptly and accurately,we propose a kind of environmental public opinion monitoring method by integrating internet search technology with remote sensing technology. Firstly,we use public opinion search platform to search in internet all the time,by with we can get to know what kinds of environmental public opinion are there. As to those hot and important environmental public opinion,we then do some environmental monitoring work by using remote sensing technology to get more detail information of it( such as the area of illegal deforest). Finally a written report on the environmental public opinion will be submitted to the Environmental Management Department. It is a new kind of environmental public opinion monitoring method,and can help the environmental management department to supervise the environment and all kinds of harmful behaviors to environment.
出处 《环境与可持续发展》 2016年第2期24-26,共3页 Environment and Sustainable Development
基金 山西省矿区生态环境监测系统及评价体系研究
关键词 舆情 舆情监控 环境舆情 遥感 互联网 网络搜索 Public Opinion Public Opinion Monitoring Environmental Public Opinion Remote Sensing Internet Internet Search
  • 相关文献

参考文献7

二级参考文献30

  • 1钟振明.论西藏突发事件的舆情监测评估与引导机制构建[J].西藏发展论坛,2013(6):61-64. 被引量:4
  • 2周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:239
  • 3刘毅.略论网络舆情的概念、特点、表达与传播[J].理论界,2007(1):11-12. 被引量:312
  • 4姚晓娜;祝忠明.基于分面搜索引擎Solr的机构知识库访问统计[M]中国科学院国家科学图书馆兰州分馆,201137-40.
  • 5Lain, Chuck. Hadoop in action[M]. Greenwich ,Connecticut: Manning Publications Co., 2010.
  • 6McQueen J. Some methods for classification and analysis of multivariate observations[C]//Proc, of the 5th Berkeley Symp. On Math. Stat. and Prob. 1967,(1):281-296.
  • 7Dean, Jeffrey, Sanjay Ghemawat. MapReduce: simplified data processing on large clusters[C]//Communications of the ACM 51, 2008,(1): 107-113.
  • 8McCallum A, Nigam K, Lyle H. Ungar: efficient clustering of high- dimensional data sets with application to reference matching[C]//Proc, of the 6th ACM SIGKDD, 2000:169-178.
  • 9粱斌.走进搜索引擎[M].北京:电子工业出版社,2007.
  • 10McCandless, Michael, Erik Hatcher,et al. Lucene in Action: Covers Apache Lucene 3.0[M]. Greenwich ,Connecticut: Manning Publications Co., 2010.

共引文献46

同被引文献22

引证文献2

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部