期刊文献+

基于混合笛卡尔网格方法的扑动翼型数值模拟 被引量:2

Numerical Simulation of Airfoil Flapping Based on Hybrid Cartesian Grid Method
下载PDF
导出
摘要 针对单体扑动翼型与前扑动/后静止串联布置的双翼型发展了适用于运动边界问题的非定常混合笛卡尔网格方法,并进行了数值模拟研究。在物面附近使用贴体结构网格,外部使用自适应笛卡尔网格来填充,使用最近"贡献单元"方法来实现两套网格之间的信息传递。发展了一套非定常可压缩求解器,使用格心格式2阶精度的有限体积方法实现空间离散,使用隐式LU-SGS双时间步方法实现时间离散。物面边界运动过程中,在贴体网格外边界进行笛卡尔网格的动态几何自适应,使用逆距离插值方法进行新鲜网格单元参数的确定。对扑动翼型的研究重点关注了推力系数与推进效率:除却很小的扑动幅值与减缩频率的工况,在单体扑动翼型后部一倍弦长处放置一个静止翼型能够增大推力系数;但推进效率的改变较为复杂,与扑动的幅值以及减缩频率相关。 An unsteady hybrid Cartesian grid method is proposed for moving boundary problems and simu- lation on a single flapping airfoil and a flapping/stationary airfoil combination in tandem is studied. The near body region is discretized by using body- fitted structured grids, while the remaining computational domain is tessellated with generated Cartesian grids. The data communication between the two grid sets is achieved by finding the nearest donor cell. In order to apply this hybrid grid method, a compressible solver for unsteady flow problems is developed with a cell-centered,2 -order accurate finite volume method for spatial discretization and an implicit dual- time stepping LU- SGS approach for temporal discretization. Geometry- based adaptation is employed as the boundary moves during unsteady simulation, in which the flow solution on the new adapted grids is interpolated from the old Cartesian grids by inverse distance weighting interpolation. In the present study, the primary attention is focused on thrust generation and pro- pulsive efficiency. It is concluded that the thrust generated on a flapping/stationary airfoil combination in tandem will significantly increase compared with that on a single flapping airfoil except when the ampli- tude of the flapping motion and the reduced frequency are large enough. The change of propulsive effi- ciency is rather complicated and is found to be a strong function of the amplitude of the flapping motion and the reduced frequency.
作者 沈志伟 赵宁
出处 《航空计算技术》 2016年第2期1-5,共5页 Aeronautical Computing Technique
基金 国家973课题项目资助(2014CB046201) 国家自然科学基金项目资助(11432007)
关键词 混合笛卡尔网格 扑动翼型 运动边界 非定常流动问题 hybrid Cartesian grid flapping airfoil moving boundary unsteady flow problems
  • 相关文献

参考文献8

  • 1Tuncer I H, Platzer M F. Thrust Generation Due to Airfoil Flapping[J]. MAA Journal,1996,34(2) :324 -331.
  • 2Kwanjung Y, Wandon J, Jihoon J, et al. Thrust Generation by Simultaneous Flapping Firfoil in Tandem Configuration [ R ]. AIAA - 2006 - 2838,2006.
  • 3Yang Shuchi, Luo Shijun, Liu Feng, et al. Computation of the Flows Vver Flapping Airfoil by the Euler Equations [ R ]. AIAA - 2005 - 1404,2005.
  • 4Ravishekar K, Wang Z J. Overset Adaptive Cartesian/Prism Grid Method for Stationary and Moving- boundary Flow Prob- lems [ J ]. AIAA Journal,2007,45 (7) : 1774 - 1778.
  • 5Nakahashi K, Togashi F, Sharov D. Intergrid- boundary Defi- nition Method for Overset Unstructured Grid Approach [ J]. AIAA Journal,2000,38 ( 11 ) :2077 - 2084.
  • 6Zhang Laiping, Wang Z J. A Block LU- SGS Implicit Dual Time- stepping Algorithm for Hybrid Dynamics Meshes [ J ]. Computers & Fluids ,2004,33 (7) :891 - 916.
  • 7沈志伟,赵宁,胡偶.基于混合笛卡儿网格方法的可压流动数值模拟[J].航空动力学报,2015,30(3):513-525. 被引量:4
  • 8Blazek J. Computational Fluid Dynamics:Principles and Ap- plications [ M ]. Amsterdam : ELSEVIER,2001.

二级参考文献23

  • 1Anderson W K. A grid generation and ~low solution meth- od for the Euler equations on unstructured grids[J].Jour- nal of Computational Physics, 1994,110(1) ~ 23-28.
  • 2Marcum D. Generation of unstructured grids for viscous flow applications[R]. AIAA 95-0212,1995.
  • 3Coirier W J, Powell K G. An accuracy assessment of Carte sian mesh approaches for the Euler equations[J]. Journal of Computational Physics,1995,117(1) 1121-131.
  • 4Domel N D, Karmen S L. Splitflow~ progress in 3D CFD with Cartesian Omni-tree grids for complex geometries [R]. AIAA-2000-1006,2000.
  • 5Aftosmis M J, Berger M J, Melton J E. Robust and effi- cient Cartesian mesh generation for component-based ge- ometry[R]. AIAA 97-0196,1997.
  • 6Steger J L, Dougherty F C, Benek J A. A chimera grid scheme[R]. Houston,TX: ASME Mini-Symposium on Ad- vances in Grid Generatioan, 1982.
  • 7Chiu I T,Meakin R L. On automationg domain connectivi-ty for overset grids[R] AIAA 95-0854,1995.
  • 8Bonet J,Peraire J. An alternating digital tree (ADT) algo- rithm for 3D geometric searching and intersection prob- lems[J]. International Journal for Numerical Methods in Engineering, 1991,31 ( 1 ) : 1-17.
  • 9Benek J A, Steger J I. Chimera.. a grid-embedding technique [R]. AEDC-TR-85-64,1985.
  • 10Munikrishna N, Liou M S. A Cartesian based body-fitted adaptive grid method for compressible viscous flows[R]. AIAA-2009-1500,2009.

共引文献3

同被引文献22

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部