期刊文献+

强化现象启发的随机振动能量收集器优化设计 被引量:1

Strengthening phenomenon-inspirited optimum design of random vibration energy harvester
下载PDF
导出
摘要 为了使宽带振动能量收集器件的平均输出功率最大,以压电型随机振动能量收集器件为研究对象,系统讨论优化设计问题.通过建立器件随机响应与输出功率统计量的解析表达式,证实了平均输出功率的局部强化现象.讨论给定激励点位置时,压电片布置位置和压电片尺寸的优化,讨论最优尺寸随激励作用点和激励带宽的变化关系.研究表明:激励作用点及对称位置是布置压电片的较好位置,压电片的最优、次优、最差、次差位置相隔很近;为了得到最大的输出功率,压电片尺寸应略大于最优尺寸. The optimum design of piezoelectric-type random vibration energy harvester was investigated to acquire the maximum mean output power.The analytical formula for the statistics of random responses and output power were established.Then the local strengthening phenomenon of mean output power were verified.For given excitation locations,the optimal locations and optimal length of piezoelectric patch were derived,and the relations of the optimal length to the excitation location and excitation bandwidth were discussed.Results show that the excitation and its symmetry location are good places for piezoelectric patch.The optimal,sub-optimal,worst and sub-worst locations of piezoelectric patch are very close.The length of piezoelectric patch should be slightly larger than the optimal design value in order to obtain the maximum output power.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2016年第5期934-940,共7页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(11302064 11472240 1153000141 51405118) 中央高校基本科研业务费(2016FZA4025)
关键词 随机振动 能量收集器 优化设计 输出功率均值 Random vibration energy harvester optimum design mean output power
  • 相关文献

参考文献17

  • 1BEEBY S P, TUDOR M J, WHITE N M. Energy harvesting vibration sources for microsystems applications [J]. Measurement Science and Technology, 2006, 17(12): R175-R195.
  • 2TANG L, YANG Y, SOH C K. Toward broadband vibrationbased energy harvesting [J]. Journal of Intelligent Material Systems and Structures, 2010, 21(18): 1867-1897.
  • 3DAQAH M F, MASANA R, ERTURK A, et al. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion [J]. Applied Mechanics Reviews, 2014, 66(4): 040801.
  • 4ANTON S R, SODANO H A. A review of power harvesting using piezoelectric materials (20032006) [J]. Smart Materials and Structures, 2007, 16(3): R1-R21.
  • 5ARIDOGAN U, BASDOGAN I, ERTURK A. Analytical modeling and experimental validation of a structurally integrated piezoelectric energy harvester on a thin plate [J]. Smart Materials and Structures, 2014, 23(4): 045-039.
  • 6ARIDOGAN U, BASDOGAN I, ERTURK A. Multiple patchbased broadband piezoelectric energy harvesting on platebased structures [J]. Journal of Intelligent Material Systems and Structures, 2014, 25(14): 1664-1680.
  • 7ERTURK A, INMAN D J. An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations [J]. Smart Materials and Structures, 2009, 18(2): 025009.
  • 8ERTURK A, TARAZAGA P A, FARMER J R,et al. Effects of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams [J]. Journal of Vibration and Acoustics, 2009, 131(1): 011010.
  • 9RUPP C J, EVGRAFOV A, MAUTE K, et al. Design of piezoelectric energy harvesting systems: a topology optimization approach based on multilayer plates and shells [J]. Journal of Intelligent Material Systems and Structures, 2009, 20(16): 1923-1939.
  • 10FRISWELL M I, ADHIKARI S. Sensor shape design for piezoelectric cantilever beams to harvest vibration energy [J]. Journal of Applied Physics, 2010, 108(1): 014901.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部