期刊文献+

基于RSSI概率统计分布的室内定位方法 被引量:9

Method for indoor positioning based on RSSI statistical probability distribution
下载PDF
导出
摘要 针对接收信号强度指示(Received Signal Strength Indication,RSSI)时变现象影响WLAN室内定位精度问题进行了研究,提出了一种基于RSSI概率统计分布(Statistical Probability Distribution,SPD)的加权K最近邻(Weighted K-Nearest Neighbor,WKNN)方法——SPD-WKNN方法。该方法首先利用SPD方法得到指纹点RSSI向量区间;然后运用SVM算法选取测试点K个近邻指纹点,计算测试点RSSI向量到每个近邻指纹点的最小欧氏距离;最后结合WKNN算法获取定位结果。实验结果表明,SPD-WKNN方法与NN、KNN、WKNN、SVR和LSSVM方法相比定位误差分别降低了47.3%、41.6%、31.9%、27.1%和16.3%,呈现了良好的定位效果;利用SVM算法的稀疏性明显减小了运算时间。 The phenomena time-varying of Received Signal Strength Indication(RSSI)affects the indoor positioning accuracy in Wireless Local Area Network(WLAN). A new Weighted K-Nearest Neighbor(WKNN)indoor positioning method based on Statistical Probability Distribution(SPD)(SPD-WKNN method), is proposed to resolve the problem.Firstly, it gets the vector interval estimation of RSSI in Fingerprint Points(FPs)by SPD method. Then, it selects K nearest neighbor FPs by Support Vector Machine(SVM)algorithm and calculates the minimum Euclidean distance from the RSSI vector of test point to each nearest neighbor FP's vector interval of RSSI. Finally, it gets the positioning results by WKNN algorithm. The experimental results show that the proposed SPD-WKNN method reduces the average positioning error about 47.3%(1.47 m)、41.6%(1.17 m)、31.9%(0.77 m)、27.1%(0.61 m)and 16.3%(0.32 m)compared to NN、KNN、WKNN、SVR and LSSVM respectively. The operation time is obviously reduced by the sparsity of SVM classification algorithm.
出处 《计算机工程与应用》 CSCD 北大核心 2016年第11期119-124,130,共7页 Computer Engineering and Applications
基金 国家科技支撑计划项目(No.2013BAH52F01) 国家级大学生创新创业计划项目(No.201410359025)
关键词 接收信号强度指示(RSSI) 室内定位 概率统计分布 加权K最近邻(WKNN) 支持向量机(SVM) Received Signal Strength Indication(RSSI) indoor positioning Statistical Probability Distribution(SPD) Weighted K-Nearest Neighbor(WKNN) Support Vector Machine(SVM)
  • 相关文献

参考文献22

  • 1周傲英,杨彬,金澈清,马强.基于位置的服务:架构与进展[J].计算机学报,2011,34(7):1155-1171. 被引量:171
  • 2Yang Qiang,Pan Jialin,Zheng Wenchen.Estimating location using Wi-Fi[J].IEEE Intelligent Systems,2008,23(1):8-13.
  • 3Zhou Sheng,Pollard J K.Position measurement using bluetooth[J].IEEE Transactions on Consumer Electronics,2006,52(2):555-558.
  • 4曾鹏飞,陈天啸,虞致国,张建国,顾晓峰.DR/RSSI组合室内定位系统设计与实现[J].计算机工程与应用,2015,51(6):244-248. 被引量:3
  • 5Luoh L.Zig Bee-based intelligent indoor positioning system soft computing[J].Soft Computing,2014,18(3):443-456.
  • 6Saab S S,Nakad Z S.A standalone RFID indoor positioning system using passive tags[J].IEEE Transactions on Industrial Electronics,2011,58(5):1961-1970.
  • 7Xiao Jinhong,Liu Zhi,Yang Yang,et al.Comparison and analysis of indoor wireless positioning techniques[C]//The International Conference on Computer Science and Service System(CSSS),2011:293-296.
  • 8邓中亮,余彦培,袁协,万能,杨磊.Situation and Development Tendency of Indoor Positioning[J].China Communications,2013,10(3):42-55. 被引量:82
  • 9Pierlot V,Van Droogenbroeck M.A new three object triangulation algorithm for mobile robot positioning[J].IEEE Transactions on Robotics,2014,30(3):566-577.
  • 10刘洺辛,孙建利.基于能效的WLAN室内定位系统模型设计与实现[J].仪器仪表学报,2014,35(5):1169-1178. 被引量:34

二级参考文献185

  • 1时文刚,刘树林,张嘉钟,黄文虎.基于支持向量机的往复泵泵阀故障诊断方法[J].机械强度,2002,24(3):362-364. 被引量:32
  • 2于德介,杨宇,程军圣.一种基于SVM和EMD的齿轮故障诊断方法[J].机械工程学报,2005,41(1):140-144. 被引量:56
  • 3杨强,吴中福,余萍,钟将.一种新型支持向量机[J].重庆大学学报(自然科学版),2005,28(2):81-84. 被引量:8
  • 4郁文贤,雍少为,郭桂蓉.多传感器信息融合技术述评[J].国防科技大学学报,1994,16(3):1-11. 被引量:157
  • 5潘晓,肖珍,孟小峰.位置隐私研究综述[J].计算机科学与探索,2007,1(3):268-281. 被引量:65
  • 6Yang B, Lu H, Jensen C S. Scalable continuous range monitoring of moving objects in symbolic indoor space//Proeeedings of the 18th ACM Conference on Information and Knowledge Management. Hong Kong, China, 2009:671-680.
  • 7Wolfson O, Sistla P A, Chamberlain S, Yesha Y. Updating and querying databases that track mobile units. Distributed and Parallel Databases, 1999, 7(3): 257-387.
  • 8Pfoser D, Jensen C S. Capturing the uncertainty of movingobjects representations//Proceedings of the 6th International Symposium on Advances in Spatial Databases. Hong Kong, China, 1999:111-132.
  • 9Cheng R: Kalashnikov D V, Prabhakar S. Querying imprecise data in moving object environments. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(9): 1112- 1127.
  • 10Zhang M, Chen S, Jensen C S, Ooi B C, Zhang Z. Effectively indexing uncertain moving objects for predictive queries// Proceedings of the VLDB Endowment. Lyon, 2009, 2 (1): 1198-1209.

共引文献346

同被引文献62

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部