期刊文献+

PARTIAL SCHAUDER ESTIMATES FOR A SUB-ELLIPTIC EQUATION 被引量:1

PARTIAL SCHAUDER ESTIMATES FOR A SUB-ELLIPTIC EQUATION
下载PDF
导出
摘要 In this paper, we establish the partial Schauder estimates for the Kohn Laplace equation in the Heisenberg group based on the mean value theorem, the Taylor formula and a priori estimates for the derivatives of the Newton potential. In this paper, we establish the partial Schauder estimates for the Kohn Laplace equation in the Heisenberg group based on the mean value theorem, the Taylor formula and a priori estimates for the derivatives of the Newton potential.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2016年第3期945-956,共12页 数学物理学报(B辑英文版)
基金 supported by the NSFC(11201486,11326153) supported by"the Fundamental Research Funds for the Central Universities(31541411213)"
关键词 partial Schauder estimates Kohn Laplace equation Heisenberg group partial Schauder estimates Kohn Laplace equation Heisenberg group
  • 相关文献

参考文献1

二级参考文献19

  • 1Burch, C., The Dini condition and regularity of weak solutions of elliptic equations, J. Differential Equations, 30, 1978, 308- 323.
  • 2Caffarelli, L. A., Interior a priori estimates for solutions of fully nonlinear equations, Ann. of Math. (2),130, 1989, 189 -213.
  • 3Caffarelli, L. A., Interior W^2,p estimates for solutions of Monge-Ampère equations, Ann. of Math. (2),131, 1990, 135- 150.
  • 4Caffarelli, L. A. and Cabre, X., Fully Nonlinear Elliptic Equations, Colloquium Pubblications, Vol. 43, A.M. S., Providence, RI, 1995.
  • 5Camnpanato, S., Propriet di una famiglia di spazi funzionali, Ann. Sc. Norm. Super Pisa Cl. Sci. (3), 18,1964, 137-160.
  • 6Evans, L. C., Classical solutions of fully nonlinear, convex, second order elliptic equations, Comm. Pure Appl. Math., 25, 1982, 333-363.
  • 7Evans, L. C., Partial Differential Equations, Graduate Studies in Mathematics, Vol. 19, A. M. S., Providence, RI, 1998.
  • 8Gilbarg, D. and Trudinger, N. S., Elliptic Partial Differential Equations of Second Order, Springer, 1983.
  • 9Kovats, J., Fully nonlinear elliptic equations and the Dini condition, Comm. Partial Differential Equations,22(11-12), 1997, 1911-1927.
  • 10Krylov, N. V., Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk. SSSR Set.Mat., 46, 1982, 487-523; English translation in Math. USSR Izv., 20, 1983, 459-492.

共引文献6

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部