期刊文献+

风力发电机温升故障预警方法研究 被引量:8

Study on the Method of Wind Turbine Temperature Fault Warning
下载PDF
导出
摘要 针对传统PCA在解决变量重要性差异很大问题时的局限性,提出一种结合relief F算法和加权主元算法的方法。该方法首先采集张家口某风场5月某段时间内风力发电机组运行数据并建立数据集,通过relief F算法确定权值向量W,进而使用加权主成分分析法建立正常工作状态下发电机温度模型。利用该模型对同一机组另一段时间运行数据进行故障检测,通过对统计量HotellingT^2(简称T^2)和平方预测误差(简称SPE)的趋势分析最终确定机组运行状态。实验结果表明,提出的方法准确预测出了发电机的温升故障,并减少了误报情况。 Aimed at the limitations of the traditional PCA in solving the problem of variable big difference importance,this paper proposes a method comprising of relief F Algorithm and Weighted Principal Component Analysis( WPCA). This method first collects the data of wind turbine operation in a certain wind farm in Zhangjiakou in May and sets up the data set,through the relief F algorithm to determine the weight vector W,and uses the weighted principal component analysis method to establish the normal working state of the generator temperature model.The model is used to detect the faults of the same set of another period of time,and trend analysis of the model statistics HotellingT^2( T^2) and squared prediction error( SPE) to finalize the running status of the unit. The experimental results show that the proposed method accurately predicts the failure of the generator temperature rise,and reduces the false alarm situation.
作者 刘轩 孙建平
出处 《电力科学与工程》 2016年第6期38-43,共6页 Electric Power Science and Engineering
基金 河北省自然科学基金(F2014502059)
关键词 加权主成分分析 发电机温度 RELIEFF算法 T2统计量 SPE统计量 WPCA generator temperature relief Falgorithm T2 statistics SPE statistics
  • 相关文献

参考文献9

二级参考文献33

  • 1李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 2边肇棋 张学工.模式识别(第2版)[M].北京:清华大学出版社,2000..
  • 3Kononenko I.Estimation attributes:analysis and extensions of RELIEF[C]//Proceedings of the 1994European Conference on Machine Learning.ACM Press,1997:273-324.
  • 4Kira K,Rendell L A.The feature selection problem:traditional methods and a new algorithm[C]//Proceedings of the9th National Conference on Artificial Intelligence.[S.l.]:AAAI Press,1992:129-134.
  • 5Faivishevsky L, Goldberger J. A Nonparametric Info- rmation Theoretic Clustering Algorithm [ C ]//Proc- eedings of the 27th International Conference on Machine Learning. Washington D. C., USA: IEEE Press,2010: 351-358.
  • 6Faivishevsky L,Goldberger J. ICA Based on a Smooth Estimation of the Differential Entropy I C ]//Proceedings of Advances in Neural Information Processing Systems. Washington D. C. , USA : IEEE Press,2008:433-440.
  • 7Kozachenko L F, Leonenko N N, Sample Estimate of Entropy of a Random Vector [ J ]. Problems of Information Transmission, 1987,23 ( 2 ) : 9-16.
  • 8Kimura M, Sugiyama M. Dependence-maximization Clustering with Least-square Mutual Information [ J ]. Journal of Advance Computational Intelligence and Intelligent Informatics, 2011,15 ( 7 ) : 800-805.
  • 9Spola6r N, Cherman E A, Monard M C, et al. A Comparison of Multi-label Feature Selection Methods Using the Problem Transformation Approach [ J ]. Electronic Notes in Theoretical Computer Science,2013, 292:135-151.
  • 10Kira K,Rendell L A. A Practical Approach to Feature Selection [ C ]//Proceedings of the 9th International Workshop on Machine Learning. San Francisco, USA: Morgan Kaufmann Publishers Inc:1992:249-256.

共引文献36

同被引文献82

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部