摘要
The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens.
The soil-water retention curve (SWRC) can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller interconnected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens.
基金
Supported by the National Natural Science Foundation of China(No.51409261)