Symmetric Periodic Orbits and Uniruled Real Liouville Domains
Symmetric Periodic Orbits and Uniruled Real Liouville Domains
摘要
A real Liouville domain is a Liouville domain with an exact anti-symplectic involution. The authors call a real Liouville domain uniruled if there exists an invariant finite energy plane through every real point. Asymptotically, an invariant finite energy plane converges to a symmetric periodic orbit. In this note, they work out a criterion which guarantees uniruledness for real Liouville domains.
基金
supported by National Research Foundation of Korea(No.2012-011755)
a stipend from the Humboldt foundation
参考文献21
-
1Albers, P., Frauenfelder, U., van Koert, O. and Paternain, G., The contact geometry of the restricted 3-body problem, Comm. Pure Appl. Math., 65(2), 2012, 229-263.
-
2Birkhoff, G., The restricted problem of three bodies, Rend. Circ. Matem. Palermo, 39, 1915, 265-334.
-
3Georgieva, P. and Zinger, A., Enumeration of real curves in CP2n-1 and a WDVV relation for real Gromov-Witten invariants, arXiv: 1309.4079.
-
4Hofer, H. and Viterbo, C., The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math., 45(5), 1992, 583-622.
-
5Hofer, H., Wysocki, K. and Zehnder, E., Properties of pseudoholomorphic curves in symplec.tisations I: Asymptotics, Ann. Inst. Henri Poincard, 13, 1996, 337-379.
-
6Hofer, H., Wysocki, K. and Zehnder, E., Properties of pseudoholomorphic curves in symplectisations IV: Asymptotics with degeneracies, in Contact a.nd Symplectic Geometry, Thomas, C. B., e.d., Cambridge University Press, Cambridge, 1996, 78-117.
-
7Hofer, H., Wysocki, K. and Zehnder, E., Correction to "Properties of pseudoholomorphic curves in sym- plectisations I: Asymptotics", Ann. Inst. Henri Poincard, 15-4, 1998, 535-538.
-
8Hu, J., Li, T. J. and Ruan, Y., Birational cobordism invariance of uniruled symplectic manifolds, Invent. Math., 172(2), 2008, 231-275.
-
9Li, T. J., Existence of Symplectic Surfaces, Geometry and Topology of Manifolds, Fields Inst. Commun., Vol. 47, Amer. Math. Soc., Providence, RI, 2005, 203-217.
-
10Liu, G. and Tian, G., Weinstein conjecture and GW-invariants, Comm. Contemp. Math., 2(4), 2000, 405-459.
-
1郭海英.An Involution on a Closed Manifold with the Fixed Point Set RP(1 )∪P(m,n)[J].Chinese Quarterly Journal of Mathematics,1998,13(2):16-26. 被引量:2
-
2曾云波,李翊神,陈登远.A HIERARCHY OF INTEGRABLE HAMILTONIAN SYSTEMS WITH NEUMANN TYPE CONSTRAINT[J].Chinese Annals of Mathematics,Series B,1992,13(3):327-340. 被引量:1
-
3Wu Zhende Liu Zongze (Department of Mathematics,Hebei Normal University,Shijazhuang 050016,China)Bai Ruipu (Department of Mathematics,Hebei University,Baoding 071002,China).The Cobordism Classification of Involution on DOLD Manifold P(1,2l)[J].Acta Mathematica Sinica,English Series,1997,13(1):9-20. 被引量:5
-
4Sanzhang XU,Jianlong CHEN,Xiaoxiang ZHANG.New characterizations for core inverses in rings with involution[J].Frontiers of Mathematics in China,2017,12(1):231-246. 被引量:10
-
5HUANG LiPing School of Mathematics and Computing Science,Changsha University of Science and Technology,Changsha 410004,China.Geometry of 2×2 Hermitian matrices over any division ring[J].Science China Mathematics,2009,52(11):2404-2418. 被引量:1
-
6刘为民.SOME REMARKS ON EIGEN'S EVOLUTION EQUATIONS[J].Chinese Science Bulletin,1982,27(4):445-448.
-
7Chang Jing LI,Quan Yuan CHEN.Strong Skew Commutativity Preserving Maps on Rings with Involution[J].Acta Mathematica Sinica,English Series,2016,32(6):745-752. 被引量:3
-
8YOU Hong NAN JizhuHarbin Institute of Technology, Harbin 150001, China.Decomposition of Steinberg group into involutions[J].Chinese Science Bulletin,1997,42(24):2061-2064.
-
9黄礼平,万哲先.Geometry of 2×2 hermitian matrices[J].Science China Mathematics,2002,45(8):1025-1037.
-
10Shan Li SUN Xue Feng MA.Lie Subalgebras in a Certain Operator Lie Algebra with Involution[J].Acta Mathematica Sinica,English Series,2011,27(8):1521-1534. 被引量:1