摘要
针对传统协作过滤推荐算法在相似性度量环节所存在的不足之处,提出一种利用属性重心剖分模型的时间调整协作过滤推荐算法,通过对项目属性矩阵填充用户所在群体所对应的普遍评分值,进而对用户—项目评分矩阵填充评分预测值,再在填充后的用户—项目评分矩阵的基础上,利用属性重心剖分模型度量出初步相似性,并结合传统相似性,得出复合相似性,最后对复合相似性进行时间维度调整,得到最终的相似性.仿真实验结果表明,与传统的协作过滤推荐算法相比,该算法可以获得更高的推荐精准度,并能够很好地适应于数据集极度稀疏、冷启动、用户兴趣漂移等特殊情形.
Faced with the shortcomings of traditional collaborative filtering algorithms' similarity measurement part, a collaborative filtering recommendation algorithm with time adjusting using attribute center of gravity model is proposed. First,the algorithm fills average ratings of the user's user group to the item-attribute rating matrix, and then fills rating predictions to the user-item rating matrix. Second, the algorithm uses attribute center of gravity model to calculate the preliminary similarity based on the filled user-item rating matrix, and then combines with the traditional similarity to gain the composite similarity. Last, the algorithm makes time-dimensional adjustment to the composite similarity to get the final similarity. Experiment results show that the algorithm can gain higher recommen- dation accuracy compared with the traditional collaborative filtering recommendation algorithms, and can well adapt to special circum- stances, such as data set's extreme sparsity, cold start, user interest drift, and so on.
出处
《小型微型计算机系统》
CSCD
北大核心
2016年第8期1697-1701,共5页
Journal of Chinese Computer Systems
基金
国家自然科学基金项目(71161007
61462022)资助
海南省产学研一体化专项项目(cxy20150025)资助
关键词
协作过滤
相似性度量
用户群体
普遍评分值
重心剖分模型
时间维度调整
collaborative filtering
similarity measurement
user group
average ratings
attribute center of gravity model
time-dimen-sional adjustment