期刊文献+

大规模软件系统日志研究综述 被引量:37

Survey on Log Research of Large Scale Software System
下载PDF
导出
摘要 规范和充分的日志是良好代码质量的必要因素,也是软件故障诊断的重要手段.然而,代码的质量管理受限于大规模软件代码的高复杂程度,目前,利用日志信息进行软件故障重现和诊断的难度大、效率低.从日志特征分析、基于日志的故障诊断、日志的增强这3个方面综述了日志研究的现状.通过对几种常用的大规模开源软件的日志进行调研,发现了一些日志相关的特征和规律以及现有工具难以解决的问题.最后,对未来的研究工作进行了展望,并分析了可能面对的挑战. Standardized and sufficient log is a necessary part of good code quality, and it plays an important role in failure diagnosis as well. Code quality management, however, is restricted by the high complexity of large-scale software. Currently, it's difficult and inefficient to reproduce and diagnose system failure with logs. This paper surveys log-related work from three aspects including log characterization, failure diagnosis with log and log enhancement. Through detailed study on several widely-used open-source software, the paper reveals some log-related observations, along with the problems which have not been well handled by existing tools. Finally, it proposes several possible log-related work, and analyzes potential challenges.
出处 《软件学报》 EI CSCD 北大核心 2016年第8期1934-1947,共14页 Journal of Software
基金 国家自然科学基金(61402496) 国家重点基础研究发展计划(973)(2014CB340703) 腾讯高校合作项目~~
关键词 系统日志 特征分析 故障诊断 日志增强 system log log characterization failure diagnosis log enhancement
  • 相关文献

参考文献46

  • 1Coverity. Coverity Scan: 2012 Open Source Report. 2013. http://www.coverity.com/.
  • 2Yuan D, Park S, Huang P, Liu Y, Lee MM, Tang X, Zhou Y, Savage S. Be conservative: enhancing failure diagnosis with proactive logging. In: Proe. of the 10th Syrup. on Operating Systems Design and Implementation (OSDI). 2012. 293-306.
  • 3Yuan D, Park S, Zhou Y. Characterizing logging practices in open-source software. In: Proc. of the 2012 Int'l Conf. on Software Engineering. 2012. 102-112. [doi: 10.1109/ICSE.2012.6227202].
  • 4Kavulya SP, Joshi K, Di Giandomenico F, Narasimhan P. Failure Diagnosis of Complex Systems, Resilience Assessment and Evaluation of Computing Systems. Springer-Verlag, 2012. 239-261. [doi: 10.1007/978-3-642-29032-9].
  • 5Fu Q, Zhu J, Hu W, Lou JG, Ding R, Lin Q, Zhang D, Xie T. Where do developers log? An empirical study on logging practices in industry. In: Proc. of the 36th Int'l Conf. on Software Engineering. 2014.24-33. [doi: 10.1145/2591062.2591175 ].
  • 6Jiang W, Hu C, Pasupathy S, Kanevsky A, Li Z, Zhou Y. Understanding Customer Problem Troubleshooting from Storage System Logs. In: Proc. of the 7th USENIX Conf. on File and Storage Technologies (FAST). 2009.43-56.
  • 7Prewett JE. Analyzing cluster log files using logsurfer. In: Proc. of the 4th Annual Conf. on Linux Clusters. 2003.
  • 8Hellerstein JL, Ma S, Perng CS. Discovering actionable patterns in event data. IBM Systems Journal, 2002,41(3):475-493. [doi: 10. 1147/sj.413.0475].
  • 9Ma S, Hellerstein JL. Mining partially periodic event patterns with unknown periods. In: Proc. of the 17th Int'l Conf. on Data Engineering. 2001. 205-214. [doi: 10.1109/ICDE.2001.914829].
  • 10Yamanishi K, Maruyama Y. Dynamic syslog mining for network failure monitoring, In: Proc. of the 11th ACM SIGKDD Int'l Conf. on Knowledge Discovery in Data Mining. 2005.499-508. [doi: 10.1145/1081870.1081927].

同被引文献183

引证文献37

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部