期刊文献+

Numerical study of heat transfer of gas-atomized Fe-6.5 %Si (mass and solidification behavior fraction) droplets

Numerical study of heat transfer of gas-atomized Fe-6.5 %Si (mass and solidification behavior fraction) droplets
原文传递
导出
摘要 During spray atomization process, the heat transfer and solidification of droplets play very important roles for the deposition quality. Due to the difficulties of experimental approach, a numerical model is developed, which integrates liquid undercooling, nucleation recalescence and post-re- calescence growth to present the full solidification process of Fe-6.5%Si (mass fraction) droplet. The droplet velocity, temperature, cooling rate as well as solid fraction profiles are simulated for droplets with different sizes to demonstrate the critical role of the size effect during the solidification process of droplets. The relationship between the simulated cooling rate and the experimentally obtained secondary dendrite arm spacing is in excellent agreement with the well-established formula. The pre-constant and exponent values lie in the range of various rapid solidified Fe-based alloys reported, which indicates the validity of the numerical model. During spray atomization process, the heat transfer and solidification of droplets play very important roles for the deposition quality. Due to the difficulties of experimental approach, a numerical model is developed, which integrates liquid undercooling, nucleation recalescence and post-re- calescence growth to present the full solidification process of Fe-6.5%Si (mass fraction) droplet. The droplet velocity, temperature, cooling rate as well as solid fraction profiles are simulated for droplets with different sizes to demonstrate the critical role of the size effect during the solidification process of droplets. The relationship between the simulated cooling rate and the experimentally obtained secondary dendrite arm spacing is in excellent agreement with the well-established formula. The pre-constant and exponent values lie in the range of various rapid solidified Fe-based alloys reported, which indicates the validity of the numerical model.
出处 《Advances in Manufacturing》 SCIE CAS CSCD 2016年第2期150-156,共7页 先进制造进展(英文版)
关键词 Fe-6.5%Si (mass fraction) alloy Gasatomization Solidification - Heat transfer Numericalsimulation Fe-6.5%Si (mass fraction) alloy Gasatomization Solidification - Heat transfer Numericalsimulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部