期刊文献+

Geochemistry of Metamafic Dykes from the Quanji Massif: Petrogenesis and Further Evidence for Oceanic Subduction, Late Paleoproterozoic, NW China 被引量:3

Geochemistry of Metamafic Dykes from the Quanji Massif: Petrogenesis and Further Evidence for Oceanic Subduction, Late Paleoproterozoic, NW China
原文传递
导出
摘要 A suite of ~1.84-1.92 Ga metamafic dykes within the paragneiss suite(khondalite) of the Quanji massif in NW China, has been chosen in this study for further understanding the tectonic evolution and possible links to the global Columbia supercontinent. Occurrence and field relations suggest that they were formed coevally with a previous studied ~1.83-1.85 Ga metamafic dyke swarms. Whole-rock major and trace elemental geochemistry suggests precursor magma of the amphibolites being generated from a volcanic arc-related tectonic setting rather than a back-arc environment where the metamafic dyke swarms were emplaced. The metamafic dykes show enrichment of LREE and strongly negative anomalies for Ta-Nb, Zr-Hf and Ti, have high SiO_2(49.3 wt.%-52.5 wt.%) but low MgO(6.40 wt.%-7.76 wt.%) contents and Mg~#(Mg~#=[100×(MgO/40.3)]/[MgO/40.3+FeO/71.8]) values(45.7-52.1), suggesting evolved precursor magma. The high values of La/Ta(22.2-42.8) and La/Nb(1.71-2.47), mildly negative εNd(t) values(-2.51-0.15), with depleted mantle model ages(TDM) of 2.45-2.84 Ga, suggest that their precursor magmas were possibly derived from a subduction-related fluid metasomatized Archean sub-continental lithospheric mantle. This study provides further evidence for oceanic plate subduction prevailing before or around ~1.85 Ga, which confirms a prolonged subduction-accretion-collision history in the NW China which is possibly linked to the assembly of the Columbia supercontinent. A suite of ~1.84-1.92 Ga metamafic dykes within the paragneiss suite(khondalite) of the Quanji massif in NW China, has been chosen in this study for further understanding the tectonic evolution and possible links to the global Columbia supercontinent. Occurrence and field relations suggest that they were formed coevally with a previous studied ~1.83-1.85 Ga metamafic dyke swarms. Whole-rock major and trace elemental geochemistry suggests precursor magma of the amphibolites being generated from a volcanic arc-related tectonic setting rather than a back-arc environment where the metamafic dyke swarms were emplaced. The metamafic dykes show enrichment of LREE and strongly negative anomalies for Ta-Nb, Zr-Hf and Ti, have high SiO_2(49.3 wt.%-52.5 wt.%) but low MgO(6.40 wt.%-7.76 wt.%) contents and Mg~#(Mg~#=[100×(MgO/40.3)]/[MgO/40.3+FeO/71.8]) values(45.7-52.1), suggesting evolved precursor magma. The high values of La/Ta(22.2-42.8) and La/Nb(1.71-2.47), mildly negative εNd(t) values(-2.51-0.15), with depleted mantle model ages(TDM) of 2.45-2.84 Ga, suggest that their precursor magmas were possibly derived from a subduction-related fluid metasomatized Archean sub-continental lithospheric mantle. This study provides further evidence for oceanic plate subduction prevailing before or around ~1.85 Ga, which confirms a prolonged subduction-accretion-collision history in the NW China which is possibly linked to the assembly of the Columbia supercontinent.
出处 《Journal of Earth Science》 SCIE CAS CSCD 2016年第4期529-544,共16页 地球科学学刊(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 41172069, 41072044, and 41372075)
关键词 metamafic dyke GEOCHEMISTRY PETROGENESIS tectonic setting Quanji massif NW China. metamafic dyke, geochemistry, petrogenesis, tectonic setting, Quanji massif, NW China.
  • 相关文献

参考文献9

二级参考文献280

共引文献184

同被引文献81

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部