期刊文献+

基于快速密度搜索聚类算法的极化HRRP分类方法 被引量:6

Target Recognition for Polarimetric HRRP Based on Fast Density Search Clustering Method
下载PDF
导出
摘要 该文针对人造目标的极化高分辨距离像,提出一种基于快速密度搜索聚类算法的分类方法。首先根据散射结构在频率和极化维度的特性,对散射中心的类型进行判别,在此基础上构造目标分类的特征矢量。然后采用快速密度搜索聚类算法,实现目标的分类。仿真实验结果表明,文中构建的特征矢量能较好地描述目标的结构属性,具有较强的可分性。而快速密度搜索聚类算法简单高效,在人造目标的分类识别中具有极大的应用潜力。 A classification algorithm based on the fast density search clustering method is proposed for polarimetric High Resolution Range Profile (HRRP) of man-made target. The polarization and frequency features are used to discriminate scattering centers in order to obtain the feature vectors for target classification. After that, the fast density search clustering method is applied to classifying the man-made target. The experiments show that the feature vectors for target classification can describe the structural properties of the target and can easily be classified. The fast density search clustering method operates simply and efficiently and can be applied to the man-made target classification with excellent performance.
出处 《电子与信息学报》 EI CSCD 北大核心 2016年第10期2461-2467,共7页 Journal of Electronics & Information Technology
基金 国家自然科学基金项目(61302143 61490693 41301490) 国家高技术研究发展计划(863计划)(2013AA122202)~~
关键词 极化高分辨距离像 散射中心 快速密度搜索 目标分类 Polarimetric High Resolution Range Profile (HRRP) Scattering center Fast density search Target classification
  • 相关文献

参考文献14

  • 1JACKSON J A and MOSES R. Canonical scattering feature models for 3D and bistatic SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(2): 525-541.
  • 2JACKSON J A. Three-dimensional feature models for synthetic aperture radar and experiments in feature extraction[D]. [Ph.D. dissertation], Ohio State University, 2009.
  • 3FULLER D F. Phase history decomposition for efficientscatterer classification in SAR imagery[D]. [Ph.D. dissertation], Air Force Institute of Technology, 2011.
  • 4SAVILLE M A, JACKSON J A, and FULLER D F. Rethinking vehicle classification with wide-angle polarimetric SAR[J]. IEEE Aerospace & Electronic Systems Magazine, 2014, 29(1): 41-49.
  • 5张瑞,牛威,寇鹏.基于样本紧密度的雷达高分辨距离像识别方法研究[J].电子与信息学报,2014,36(3):529-536. 被引量:9
  • 6冯博,陈渤,王鹏辉,刘宏伟,严俊坤.利用稳健字典学习的雷达高分辨距离像目标识别算法[J].电子与信息学报,2015,37(6):1457-1462. 被引量:18
  • 7WANG J, LI Y, and CHEN K. Radar high-resolution range profile recognition via geodesic weighted sparse representation[J]. IET Radar, Sonar & Navigation, 2015, 9(1) 75-83.
  • 8POTTER L C, CHIANG D M, CARRIERE R, et al. A GTD-based parametric model for radar scattering[J]. IEEE Transactions on Antennas and Propagation, 1995, 43(10): 1058-1067.
  • 9KROGAGER E. A new decomposition of the radar target scattering matrix[J]. Electronics Letters, 1990, 26(18): 1525-1526.
  • 10LEE J S and POTTIER E. Polarimetric Radar Imaging: From Basics to Applications[M]. Boca Raton: Taylor & Francis Group, 2009.

二级参考文献10

共引文献22

同被引文献44

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部