期刊文献+

基于改进粒子群优化的并行极限学习机 被引量:11

Parallel Extreme Learning Machine Based on Improved Particle Swarm Optimization
下载PDF
导出
摘要 为了提高极限学习机(ELM)网络的稳定性,提出基于改进粒子群优化的极限学习机(IPSO-ELM).结合改进的粒子群优化算法寻找ELM网络中最优的输入权值、隐层偏置及隐层节点数.通过引入变异算子,增强种群的多样性,并提高收敛速度.为了处理大规模电力负荷数据,提出基于Spark并行计算框架的并行化算法(PIPSO-ELM).基于真实电力负荷数据的实验表明,PIPSO-ELM具有更高的稳定性及可扩展性,适合处理大规模的电力负荷数据. To improve the stability of extreme learning machine( ELM) , an extreme learning machine based on improved particle swarm optimization ( IPSO-ELM ) is proposed. By combining the improved particle swarm optimization with ELM, IPSO-ELM can find the optimal number of nodes in the hidden layer as well as the optimal input weights and hidden biases. Furthermore, a mutation operator is introduced into IPSO-ELM to enhance the diversity of swarm and improve the convergence speed of the random search process. Then, to handle the large-scale electrical load data, a parallel version of IPSO-ELM named PIPSO-ELM is implemented with the popular parallel computing framework Spark. Experimental results of real-life electrical load data show that PIPSO-ELM obtains better stability and scalability with higher efficiency in large-scale electrical load prediction.
作者 李婉华 陈羽中 郭昆 郭松荣 刘漳辉 LI Wanhua CHEN Yuzhong GUO Kun GUO Songrong LIU Zhanghui(College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116 Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350116 Fujian Collaborative Innovation Center for Big Data Applications in Governments, Fuzhou 350003)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2016年第9期840-849,共10页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61300102 61300103 61300104) 福建省自然科学基金项目(No.2014J01233 2013J01230 2013J01232) 福建省杰出青年科学基金项目(No.2015J06014 2014J06017) 福建省教育厅重点项目(No.JK2012003) 福建省科技厅高校产学合作重大项目(No.2014H6014) 福建省科技创新平台项目(No.2014H2005) 福建省科技平台建设项目(No.2009J1007)资助~~
关键词 电力负荷预测 极限学习机(ELM) 粒子群优化 变异算子 并行计算 Electrical Load Prediction, Extreme Learning Machine (ELM), Particle SwarmOptimization (PSO), Mutation Operator, Parallel Computation
  • 相关文献

参考文献20

  • 1WEI R R, WEI Z Z, RONG R, et al. Short Term Load Forecasting Based on PCA and LS-SVM. Advanced Materials Research, 2013, 756/757/758/759: 4193-4197.[J].
  • 2AHMAD A S, HASSAN M Y, ABDULLAH M P, et al. A Review on Applications of ANN and SVM for Building Electrical Energy Consumption Forecasting. Renewable and Sustainable Energy Reviews, 2014, 33: 102-109.
  • 3SCHORFHEIDE F, SONG D H. Real-Time Forecasting with a Mixed-Frequency VAR. Journal of Business & Economic Statistics, 2015, 33(3): 366-380.
  • 4SUN Y Q, WANG R J, SUN B Y, et al. Prediction about Time Series Based on Updated Prediction ARMA Model // Proc of the 10th International Conference on Fuzzy Systems and Knowledge Discovery. New York, USA: IEEE, 2013: 680-684.
  • 5XIA C H, WANG J, MCMENEMY K. Short, Medium and Long Term Load Forecasting Model and Virtual Load Forecaster Based on Radial Basis Function Neural Networks. International Journal of Electrical Power & Energy Systems, 2010, 32(7): 743-750.
  • 6KODOGIANNIS V S, AMINA M, PETROUNIAS I. A Clustering-Based Fuzzy Wavelet Neural Network Model for Short-Term Load Forecasting. International Journal of Neural Systems, 2013, 23(5). DOI: 10.1142/S012906571350024X.
  • 7PENG H W, WU S F, WEI C C, et al. Time Series Forecasting with a Neuro-Fuzzy Modeling Scheme. Applied Soft Computing, 2015, 32: 481-493.
  • 8EGRIOGLU E, YOLCU U, ALADAG C H, et al. Recurrent Multiplicative Neuron Model Artificial Neural Network for Non-linear Time Series Forecasting. Procedia-Social and Behavioral Sciences, 2014, 109: 1094-1100.
  • 9HUANG G B, ZHU Q Y, SIEW C K. Extreme Learning Machine: Theory and Applications. Neurocomputing, 2006, 70(1/2/3): 489-501.
  • 10XU Y. A Gradient-Based ELM Algorithm in Regressing Multi-variable Functions // Proc of the 3rd International Symposium on Neural Networks. Berlin, Germany: Springer, 2006, I: 653-658.

同被引文献107

引证文献11

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部