期刊文献+

Influence of synthesis temperature on electrochemical performance of polyoxomolybdate as cathode material of lithium ion battery 被引量:1

反应合成温度对锂离子电池正极材料聚氧钼酸盐电化学性能的影响(英文)
下载PDF
导出
摘要 In order to improve the electrochemical performance of polyoxomolybdate Na3[AlMo6O24H6](NAM) as the cathode material of lithium ion battery, the NAM materials with small particle size were synthesized by elevatingthe synthesistemperaturein the solution.The as-prepared NAM materials were investigated by FT-IR, XRD, SEM and EIS. Their discharge-charge and cycle performance were also tested. The resultsshowthat the particle size decreasesto less than10μm at the temperature ofhigher than 40℃.When synthesized at 80℃,the NAMwiththe smallest particle size (-3μm)exhibitsthe best electrochemical performance such ashigh initial discharge capacity of 409 mA·h/gandcoulombic efficiency of 95% in the first cycle at 0.04C. 为了改善聚氧钼酸盐 Na3[AlMo6O24H6](NAM)作为锂离子电池正极材料的电化学性能,通过升高反应溶液的温度,得到了小粒径的NAM材料,并对其进行了红外光谱、XRD、扫描电镜、EIS等分析和充放电性能测试。结果表明,当反应温度高于40℃时,粒径降低到10μm以下。当合成温度达到80℃时,NAM的粒径最小(-3μm),且其电化学性能最佳,在首次循环过程中,0.04C下的首次放电容量高达409 mA·h/g,库伦效率达95%。
出处 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2687-2692,共6页 中国有色金属学报(英文版)
关键词 POLYOXOMOLYBDATE lithium ion battery cathode material high capacity 聚氧钼酸盐 锂离子电池 正极材料 高容量
  • 相关文献

参考文献1

二级参考文献21

  • 1GU Yi-jie, ZENG Cui-song, WU Hui-kang, CUI Hong-zhi, HUANG Xiao-wen, LIU Xiu-bo, WANG Cui-ling, YANG Zhi-ning, LIU Hong. Enhanced cycling performance and high energy density of LiFePO4 based lithium ion batteries [J]. Materials Letters, 2007, 61: 4700-4702.
  • 2LIU Ping, WANG J, HICKS-GARNER U, SHERMAN E, SOUKIAZIAN S, VERBRUGGE M, TATARIA H, MUSSER J, FINAMORE P. Aging mechanisms of LiFePO4 batteries deduced by eleelIochemical and structural analyses [J]. Journal of the Electrochemical Society A, 2010, 157: 499-507.
  • 3TANG Hao, TAN Long, XU Jun. Synthesis and characterization of LiFePO4 coating with aluminum doped zinc oxide [J]. Transaction of Nonferrous Metals Society of China, 2013, 23:451-455.
  • 4AMINE K, LIU J, BELHAROUAK I. High-temperature storage and cycling of C-LiFePOdgraphite Li-ion cells [J]. Electrochemistry Communications, 2005, 7: 669-673.
  • 5SAFAR/ M, DELACOURT C. Aging of a commercial graphite/LiFePO4 cell [J]. Joumal of the electrochemical Society A, 2011, 158(10): 1123-1135.
  • 6CASTRO L, DEDRYVERE R, LEDEUIL 3 B, BREGER J, TESSIER C, GONBEAU D. Aging mechanisms of LiFePO4//graphite cells studied by XPS: Redox reaction and electrode/electrolyte interfaces [J]. Journal of the Electrochemical Society A, 2012, 159(4): 357-363.
  • 7KOLTYPIN M, AURBACH D, NAZAR L, ELLIS B. On the Stability of LiFePO4 Olivine cathodes under various conditions (electrolyte solutions, temperature) [J]. Electrochemical and Solid-State Letters A, 2007, 10(2): 40-44.
  • 8ZAGHIB K, RAVET N, GAUTHIER M, GENDRON F, MAUGER A, GOODENOUGH J B, JULIEN C M. Optimized electrochemical performance of LiFePO4 at 60℃ with purity controlled by SQUID magnetometry [J]. Journal of Power Sources, 2006, 163: 560-566.
  • 9KIM J H, WOO S C, PARK M S, KIM K J, YIM T, KIM J S, KIMY J. Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage [J]. Journal of Power Sources, 2013, 229: 190-197.
  • 10CHANG C C, CHEN T K, HER L J, FEY G T K. Tris (pentafluorophenyl) borane as an electrolyte additive to improve the high temperature cycling performance of LiFePO4 cathode [J]. Journal of the Electrochemical Society A, 2009, 156(11): 828-832.

共引文献3

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部