期刊文献+

Effect of temperature,salinity and irradiance on growth and photosynthesis of Ulva prolifera 被引量:15

Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera
下载PDF
导出
摘要 Intensive Pyropia aquaculture in the coast of southwestern Yellow Sea and its subsequent waste, including disposed Ulva prolifera, was speculated to be one of the major sources for the large-scale green tide proceeding in the Yellow Sea since 2007. It was, however, unclear how the detached U. prolifera responded and resumed growing after they detached from its original habitat. In this study, we investigated the growth and photosynthetic response of the detached U. prolifera to various temperature, salinity and irradiance in the laboratory. The photosynthetic rate of the detached U. prolifera was significantly higher at moderate temperature levels(14–27℃)and high salinity(26–32), with optimum at 23℃ and 32. Both low(14℃) and highest temperature(40℃), as well as low salinity(8) had adverse effects on the photosynthesis. Compared with the other Ulva species, U. prolifera showed higher saturated irradiance and no significant photoinhibition at high irradiance, indicating the great tolerance of U. prolifera to the high irradiance. The dense branch and complex structure of floating mats could help protect the thalli and reduce photoinhibition in field. Furthermore, temperature exerted a stronger influence on the growth rate of the detached U. prolifera compared to salinity. Overall, the high growth rate of this detached U. prolifera(10.6%–16.7% d^–1) at a wide range of temperature(5–32℃) and salinity(14–32) implied its blooming tendency with fluctuated salinity and temperature during floating. The environmental parameters in the southwestern Yellow Sea at the beginning of green tide were coincident with the optimal conditions for the detached U. prolifera. Intensive Pyropia aquaculture in the coast of southwestern Yellow Sea and its subsequent waste, including disposed Ulva prolifera, was speculated to be one of the major sources for the large-scale green tide proceeding in the Yellow Sea since 2007. It was, however, unclear how the detached U. prolifera responded and resumed growing after they detached from its original habitat. In this study, we investigated the growth and photosynthetic response of the detached U. prolifera to various temperature, salinity and irradiance in the laboratory. The photosynthetic rate of the detached U. prolifera was significantly higher at moderate temperature levels(14–27℃)and high salinity(26–32), with optimum at 23℃ and 32. Both low(14℃) and highest temperature(40℃), as well as low salinity(8) had adverse effects on the photosynthesis. Compared with the other Ulva species, U. prolifera showed higher saturated irradiance and no significant photoinhibition at high irradiance, indicating the great tolerance of U. prolifera to the high irradiance. The dense branch and complex structure of floating mats could help protect the thalli and reduce photoinhibition in field. Furthermore, temperature exerted a stronger influence on the growth rate of the detached U. prolifera compared to salinity. Overall, the high growth rate of this detached U. prolifera(10.6%–16.7% d^–1) at a wide range of temperature(5–32℃) and salinity(14–32) implied its blooming tendency with fluctuated salinity and temperature during floating. The environmental parameters in the southwestern Yellow Sea at the beginning of green tide were coincident with the optimal conditions for the detached U. prolifera.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第10期114-121,共8页 海洋学报(英文版)
基金 The Special Funds for Basic Ocean Science Research of FIO under contract Nos 2012T08,2014G33 and 2008T30 the National Natural Science Foundation of China-Shandong Joint Funded Project“Marine Ecology and Environmental Sciences”under contract No.U1406403 the National Natural Science Foundation of China under contract Nos 41206162 and 41206161 the National Basic Research Program(973 Program)of China under contract No.2010CB428703
关键词 Ulva prolifera green tide PHOTOSYNTHESIS growth rate temperature SALINITY Ulva prolifera green tide photosynthesis growth rate temperature salinity
  • 相关文献

同被引文献144

引证文献15

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部