摘要
To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue(RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulovi?-Dabi? model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth(NG), interaction at phase boundaries(I), and diffusion(D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud-coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC.
To elucidate the intrinsic reaction mechanism of cementitious materials composed of red mud and coal gangue(RGC), the hydration kinetics of these cementitious materials at 20°C was investigated on the basis of the Krstulovi?-Dabi? model. An isothermal calorimeter was used to characterize the hydration heat evolution. The results show that the hydration of RGC is controlled by the processes of nucleation and crystal growth(NG), interaction at phase boundaries(I), and diffusion(D) in order, and the pozzolanic reactions of slag and compound-activated red mud-coal gangue are mainly controlled by the I process. Slag accelerates the clinker hydration during NG process, whereas the compound-activated red mud-coal gangue retards the hydration of RGC and the time required for I process increases with increasing dosage of red mud-coal gangue in RGC.
基金
financially supported by the National Natural Science Foundation of China(Nos.51302012 and 51234008)
the China Postdoctoral Science Foundation(No.2016M590046)