摘要
Nanoparticulate gold catalysts supported on niobium oxides (Nb2O5) were prepared by different deposition methods. The deposition precipitation (DP) method, DP method with urea, deposition reduction (DR) method and one‐pot method were used to prepare a 1 wt%Au/Nb2O5 catalyst. Lay‐ered‐type Nb2O5 synthesized by a hydrothermal method (Nb2O5(HT)) was the most suitable as a support among various types of Nb2O5 including commercially available Nb2O5 samples. It appeared that the large BET surface area of Nb2O5(HT) enabled the dispersion of gold as nanoparticles (NPs). Gold NPs with a mean diameter of about 5 nm were deposited by both the DP method and DR method on Nb2O5(HT) under an optimized condition. The temperature for 50%CO conversion for Au/Nb2O5(HT) prepared by the DR method was 73 °C. Without deposition of gold, Nb2O5(HT) showed no catalytic activity for CO oxidation even at 250 °C. Therefore, the enhancement of the activity by deposition of gold was remarkable. This simple Au/Nb2O5 catalyst will expand the types of gold catalysts to acidic supports, giving rise to new applications.
采用不同的沉积法制备了氧化铌(Nb_2O_5)负载的金纳米粒子催化剂,即沉积-沉淀(DP)法、尿素辅助的DP法、沉积-还原(DR)法和一步法制备了1 wt%Au/Nb_2O_5催化剂.在众多类型Nb_2O_5(包括商业Nb_2O_5)中,采用水热法制备的层间型Nb_2O_5(Nb_2O_5(HT))最适合用作载体.结果表明,较大比表面积的Nb_2O_5(HT)使得金以纳米颗粒形式分散于其上.在优化的条件下,以DP和DR法沉积于Nb_2O_5(HT)上的金纳米粒子平均粒径为5 nm.采用DR法制备的Au/Nb_2O_5(HT)催化剂上CO转化率为50%时的温度为73 oC.不沉积金的条件下,即使在250 oC,Nb_2O_5(HT)对CO氧化反应也没有催化活性.因此,金的沉积对活性的促进作用非常明显.该简易Au/Nb_2O_5催化剂将金催化剂的类型扩展到酸性载体,这将增加新的应用.