期刊文献+

定量磁化率成像多回波相位拟合算法研究 被引量:2

A Phase Fitting Algorithm for Multi-Echo Quantitative Susceptibility Mapping
下载PDF
导出
摘要 定量磁化率成像(quantitative susceptibility mapping,QSM)技术大多采用多回波梯度回波序列采集相位数据,经加权最小二乘法(weighted linear least-square,WLS)拟合得到局部磁场分布.对于组织磁化率分布不均匀的区域,尤其是颅底部位,常规WLS算法拟合得到的局部磁场误差较大,导致相应部位磁化率分布图信噪比较低.针对常规WLS算法的这一不足,该文提出了一种截断WLS算法.对两种算法拟合得到的磁化率分布图对比研究发现,截断WLS算法可有效提高颅底部位定量磁化率分布图的图像质量,使其噪声明显下降. A weighted linear least-square (WLS) algorithm is generally applied for multi-echo phase data to estimate the voxel-by-voxel field shift, which is further used for inversion of susceptibility map. The fitting error on the estimated field map, induced from conventional WLS method, may lead to artifacts and low signal-to-noise ratio on the susceptibility map, especially in the regions with inhomogeneous distribution of magnetic susceptibility. To improve the accuracy of the estimated field map, a truncated WLS approach was used to truncate the signal of low signal-to-noise ratio and capture the field information before the signal in a voxel decays to the noise level, which can enhance the contrast of structures in the bottom of the brain on the susceptibility map. Experimental studies demonstrated that susceptibility noise was dramatically reduced by method of truncated WLS.
作者 赵欣欣 薄斌仕 刘田 王乙 李建奇 ZHAO Xin-xin BO Bin-shi LIU Tian WANG Yi LI Jian-qi(Shanghai Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, China Department of Radiology, Weill Medical College, Cornell University, Ithaca, New York 10021, USA Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA)
出处 《波谱学杂志》 CAS CSCD 北大核心 2016年第4期609-617,共9页 Chinese Journal of Magnetic Resonance
基金 国家自然科学基金资助项目(81271533)
关键词 定量磁化率成像(QSM) 多回波相位拟合 加权最小二乘法(WLS) 阈值截断 quantitative susceptibility mapping (QSM), multi-echo phases fitting, weighted linear least-square (WLS), threshold truncation
  • 相关文献

参考文献2

二级参考文献65

  • 1Reichenbach J R,Venkatesan R,Schillinger D J,et al.Small vessels in the human brain:MR venography with deoxyhemoglobin as an intrinsic contrast agent[J].Radiology,1997,204(1):272-277.
  • 2Haacke E M,Xu Y B,Cheng Y C N,et al.Susceptibility weighted imaging (SWI)[J].Magn Reson Med,2004,52(3):612-618.
  • 3Li L,Leigh J S.Quantifying arbitrary magnetic susceptibility distributions with MR[J].Magn Reson Med,2004,51(5):1 077-1 082.
  • 4Port J D,Pomper M G.Quantification and minimization of magnetic susceptibility artifacts on GRE images[J].J Comput Assist Tomogr,2000,24(6):958-964.
  • 5Salomir R,De Senneville B D,Moonen C T W.A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility[J].Concepts Magn Reson Part B-Magn Reson Eng,2003,19B(1):26-34.
  • 6Liu C L.Susceptibility Tensor Imaging[J].Magn Reson Med,2010,63(6):1 471-1 477.
  • 7de Rochefort L,Brown R,Prince M R,et al.Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field[J].Magn Reson Med,2008,60(4):1 003-1 009.
  • 8de Rochefort L,Nguyen T,Brown R,et al.In vivo quantification of contrast agent concentration using the induced magnetic field for time-resolved arterial input function measurement with MRI[J].Med Phys,2008,35(12):5 328-5 339.
  • 9Liu T A,Spincemaille P,de Rochefort L,et al.Unambiguous identification of superparamagnetic iron oxide particles through quantitative susceptibility mapping of the nonlinear response to magnetic fields[J].Magn Reson Imaging,2010,28(9):1 383 1 389.
  • 10Li W,Wu B,Liu C L.Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition[J].Neuroimage,2011,55(4):1 645-1 656.

共引文献16

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部