摘要
An ultra-wideband pattern reconfigurable antenna is proposed.The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating.It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate.By changing the DC bias voltages to the different gating pads,the surface impedance of the graphene coating can be freely controlled.Due to the tunability of graphene's surface impedance,the radiation pattern of the proposed antenna can be reconfigured.A transmission line method is used to illustrate the physical mechanism of the proposed antenna.The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%.
An ultra-wideband pattern reconfigurable antenna is proposed.The antenna is a dielectric coaxial hollow monopole with a cylindrical graphene-based impedance surface coating.It consists of a graphene sheet coated onto the inner surface of a cylindrical substrate and a set of independent polysilicon DC gating pads mounted on the outside of the cylindrical substrate.By changing the DC bias voltages to the different gating pads,the surface impedance of the graphene coating can be freely controlled.Due to the tunability of graphene's surface impedance,the radiation pattern of the proposed antenna can be reconfigured.A transmission line method is used to illustrate the physical mechanism of the proposed antenna.The results show that the proposed antenna can reconfigure its radiation pattern in the omnidirectional mode with the relative bandwidth of 58.5% and the directional mode over the entire azimuth plane with the relative bandwidth of 67%.
基金
Project supported by the National Natural Science Foundation of China(Grant Nos.61661012,61461016,and 61361005)
the Natural Science Foundation of Guangxi,China(Grant Nos.2015GXNSFBB139003 and 2014GXNSFAA118283)
Program for Innovation Research Team of Guilin University of Electromagnetic Technology,China
the Dean Project of Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing,China