期刊文献+

Optimization of rice wine fermentation process based on the simultaneous saccharification and fermentation kinetic model 被引量:11

Optimization of rice wine fermentation process based on the simultaneous saccharification and fermentation kinetic model
下载PDF
导出
摘要 Chinese rice wine making is a typical simultaneous saccharification and fermentation (SSF) process. During the fermentation process, temperature is one of the key parameters which decide the quality of Chinese rice wine. To optimize the SSF process for Chinese rice wine brewing, the effects of temperature on the kinetic parameters of yeast growth and ethanol production at various temperatures were determined in batch cultures using a mathematical model. The kinetic parameters as a function of temperature were evaluated using the software Origin8.0. Combing these functions with the mathematical model, an appropriate form of the model equations for the SSF considering the effects of temperature were developed. The kinetic parameters were found to fit the experimental data satisfactorily with the developed temperature-dependent model. The temperature profile for maximizing the ethanol production for rice wine fermentation was determined by genetic algorithm. The optimum temperature profile began at a low temperature of 26℃ up to 30 h. The operating temperature increased rapidly to 31.9 ℃, and then decreased slowly to 18℃ at 65 h. Thereafter, the temperature was maintained at 18 ℃ until the end of fermentation. A maximum ethanol production of 89.3 g.L 1 was attained. Conceivably, our model would facilitate the improvement of Chinese rice wine production at the industrial scale. Chinese rice wine making is a typical simultaneous saccharification and fermentation(SSF) process.During the fermentation process,temperature is one of the key parameters which decide the quality of Chinese rice wine.To optimize the SSF process for Chinese rice wine brewing,the effects of temperature on the kinetic parameters of yeast growth and ethanol production at various temperatures were determined in batch cultures using a mathematical model.The kinetic parameters as a function of temperature were evaluated using the software Origin8.0.Combing these functions with the mathematical model,an appropriate form of the model equations for the SSF considering the effects of temperature were developed.The kinetic parameters were found to fit the experimental data satisfactorily with the developed temperature-dependent model.The temperature profile for maximizing the ethanol production for rice wine fermentation was determined by genetic algorithm.The optimum temperature profile began at a low temperature of 26 °C up to 30 h.The operating temperature increased rapidly to 31.9 °C,and then decreased slowly to 18 °C at 65 h.Thereafter,the temperature was maintained at18 °C until the end of fermentation.A maximum ethanol production of 89.3 g·L^(-1)was attained.Conceivably,our model would facilitate the improvement of Chinese rice wine production at the industrial scale.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第10期1406-1412,共7页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China(21276111,21206053,61305017) the Programme of Introducing Talents of Discipline to Universities(B12018) Fundamental Research Funds for the Central Universities(JUSRP11558) the Natural Science Foundation of Jiangsu Province(no.BK20160162) the Fundamental Research Funds for the Central Universities(JUSRP51510)
关键词 Chinese rice wine Temperature controlling Simultaneous saccharification and fermentation Optimal temperature profile 中国米饭酒;控制的温度;同时的 saccharification 和发酵;最佳的温度侧面
  • 相关文献

同被引文献138

引证文献11

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部