期刊文献+

Model Identification Based on Subspace Model Identification of Main Steam Temperature in Ultra-Supercritical Coal-Fired Power Unit

Model Identification Based on Subspace Model Identification of Main Steam Temperature in Ultra-Supercritical Coal-Fired Power Unit
下载PDF
导出
摘要 Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit. Ultra-supercritical(USC) unit is more and more popular in coal-fired power industry.In this paper,closed-loop identification based on subspace model identification(SMI) is introduced for superheated steam temperature system of USC unit.Closed-loop SMI is applied to building step response model of the unit directly.The parameters selection method is proposed to deal with the parameter sensitivity and improve the reliability of the model.Finally,the model is used in model identification of real USC unit.
出处 《Journal of Donghua University(English Edition)》 EI CAS 2016年第5期724-728,共5页 东华大学学报(英文版)
基金 National Natural Science Foundation of China(No.60974119)
关键词 supercritical steam spray fired matrices desired outlet subspace operated basically subspace model identification(SMI) main steam temperature ultra-supercritical(USC) unit
  • 相关文献

参考文献2

二级参考文献49

  • 1刘兴华,刘宪英,胡泽.基于RBF神经网络系统辨识研究[J].现代电子技术,2004,27(24):57-59. 被引量:7
  • 2KIIMAR S.Neural Network[M].北京:清华大学出版社,2006:55-97.
  • 3腾名鑫 熊忠阳 张玉芳.BP改进算法综述.计算机科学,2008,35(4):237-239.
  • 4JIA L,CHIU M S,GE S Z S.A Noniterative Neuro-Fuzzy Based Identification Method for Hammerstein Processes[J].Journal of Process Control,2005,1s(7):749-761.
  • 5LU N,GAO F.stage-Based Process Analysis and Quality Prediction for Batch Processes[J].Industrial and Engineering Chemistry Research,2005,44(10):3547-3555.
  • 6XIONG Z H,ZHANG J-Product Quality Trajectory Tracking in Batch Processes Using Iterative Learning Control Based on Time-Varying Perturbation Models[J].American Chemical Society,2003,42(26):6802-6814.
  • 7RAY W H.Advanced Process Control[M].New York:McGraw-Hil,1981:152-185.
  • 8Favoreel W,De Moor B,Van Overschee P.Subspace state space system identification for industrial processes.Journal of Process Control,2000,10:149-155.
  • 9Jansson M,Wahlberg B.A linear regression approach to state-space subspace system identification.Signal Processing,1996,52:103-129.
  • 10Katayama T,Picci G.Realization of stochastic systems with exogenous inputs and subspace identification methods.Automatica,1999,35:1635-1652.

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部