期刊文献+

压电-电磁复合式俘能器设计及能量收集测试 被引量:10

Design of Coupled Piezoelectric-Electromagnetic Energy Harvester and Energy Collecting Tests
下载PDF
导出
摘要 设计了一种压电-电磁复合式俘能器,利用机电耦合状态方程推导了输出功率表达式。应用试验测试对比分析了压电式、电磁式、复合式俘能器的输出特性,结果表明,复合式俘能器的3dB带宽比压电式、电磁式俘能器分别增大了67%、25%,最大功率提高了38%、118%。设计了压电-电磁复合式俘能器能量收集电路,分别利用LTC3588、LTC3108芯片收集压电俘能单元、电磁俘能单元输出的电能,并用超级电容存储。分别应用3种俘能器进行超级电容充电测试,结果表明,复合式俘能器的充电时间比压电式、电磁式俘能器分别减少了29%和52%。 A coupled piezoelectric-electromagnetic energy harvester was designed, the expression of output power was derived by the electromechanical coup[ingstate equations. The output characteristics of piezoelectric, electromagnetic and coupled piezoelectric-electromagnetic energy harvesters were compared through experimental tests. The results show that the 3 dB bandwidth of the coupled piezoelectric-electromagnetic energy harvester was increased by 67% and 25 % compared with piezoelectric and electromagnetic energy harvesters, respectively, resulting in an increase of 38% and 118% in maximum output power respectively. The energy collecting circuit of coupled piezoelec tric-electromagnetic energy harvester was designed. The electric energy converted from piezoelectric energy harvesting unit and electromagnetic energy-harvesting unit were collected by LTC3588 and LTC3108 chips separately, and then stored in a super-capacitor. The charge tests of super-capacitor were conducted using three energy harvesters separately. It is indicated that the charge time of coupled piezoelectric-electromagnetic energy harvester was decreased by 29% and 52 % compared with piezoelectric and electromagnetic energy harvesters, respectively.
出处 《压电与声光》 CAS CSCD 北大核心 2016年第6期902-905,共4页 Piezoelectrics & Acoustooptics
基金 国家"八六三"计划基金资助项目(SS2013AA041104)
关键词 超级电容 输出功率 充电时间 带宽 振动 super-capacitor output power charge time bandwidth vibration
  • 相关文献

参考文献2

二级参考文献30

  • 1石胜君,陈维山,刘军考,赵学涛.一种基于纵弯夹心式换能器的直线超声电机[J].中国电机工程学报,2007,27(18):30-34. 被引量:24
  • 2JIANG Shunong, LI Xianfang, GUO, Shaohua, et al. Performance of a piezoelectricbimorph for scavenging vibration energy [J]. Smart Mater Struct, 2005, 14: 769-774.
  • 3JIANG Shunong, HU Yuantai. Analysis of a piezoelectric bimorph plate with a central-attached mass as an energy harvester [J].IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54 (7) : 1463-1469.
  • 4HU Yuantai, XUE Huan, HU Hongping, et al. A piezoelectric power harvester with adjustable frequency through axial preloads[J].Smart Mater Struct, 2007, 16: 1961-1966.
  • 5HU Yuantai, XUE Huan, HU Ting, et al. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery [J]. IEEE Transactions on Ultrasonics, Ferroelectr, and Frequency Control, 2008, 55(1) : 148-160.
  • 6NG T H, LIAO W H. Sensitivity analysis and energy harvesting for self-powered piezoelectric sensor [J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10):785-797.
  • 7ROUNDY S J. Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion [M]. New York: Spring,2003.
  • 8沙山克·普里亚(印),丹尼尔·茵曼(美)著.能量收集技术[M].南京:东南大学出版社,2011:175-203.
  • 9RODRIGUEZ G A A,DUROU H, OURAK L, et al.. Fabrication and simulation of a PZT energy harvester MEMS [C]. Proceedings of Power MEMS 2008 and micro MEMS2008, November 9- 12, 2008, Japan: Sendai,2008: 193-196.
  • 10COTTONE F, VOCCA H, GAMMAITONI L. Nonlinear energy harvesting [J]. Phys Rev Lett, 2009,102(8):080601-4.

共引文献34

同被引文献86

引证文献10

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部