摘要
针对张量特征值的估计问题,通过得到类似于矩阵上Brauer卵形定理的方法,得到一个不同的张量特征值的包含区域.经过证明得到的包含区域更精确.当该定理退化成矩阵上的特征值包含区域时,得到一个新的矩阵特征值包含区域,并且和已有的特征值包含区域进行比较.经证明得到的结果劣于已有的包含区域.
Aiming at estimation of eigenvalues of tensors, a method for different tensor eigenvalue was obtained by a method similar to that of the Brauer ovoid theorem. The contained region was proved to be more precise. When the theorem was degenerated into the eigenvalue of matrix, a new matrix eigenvalue was obtained. Compared with the existing eigenvalue inclusion, the obtained results are inferior to the existing inclusion region.
作者
胡汭炎
袁红丽
赵晶
HU Ruiyan YUAN Hongli ZHAO Jing(College of Mathematics and Statistics, Yunnan University, Kunming, Yunnan 650500, Chin)
出处
《宜宾学院学报》
2016年第12期76-80,共5页
Journal of Yibin University
关键词
张量特征值
矩阵特征值
定位集
tensor eigenvalue
matrix eigenvalue
localization