期刊文献+

基于AS模型和自适应双边滤波快速去雾算法 被引量:2

Fast Removal Fog Algorithm Based on the Adaptive Bilateral Filtering
下载PDF
导出
摘要 为了获得雾天图像原始信息,减少颜色失真及边缘缺失等现象发生,提出了一种基于AS模型和自适应双边滤波快速去雾算法。由双边滤的波平滑特性推出大气耗散函数,并结合估测的大气光强实现了雾天退化处理;针对雾天图像明亮失真区域,引入了辅助函数对透射率进行自适应调控及其优化,实现了对雾天图像颜色失真和局部弱化的处理。实验仿真结果表明,文中算法处理的4组不同景深下的雾天图像整体清晰度要有优于其他算法,运行时间减少,最快可节省54.9480s。在细节处理上更细腻,边缘信息保留更加完整,尤其是在景深突变的边缘处无Halo效应,颜色失真得到了较大改善。 In order to obtain the original information of the fog image and reduce the color distortion and marginal loss, a fast removal algorithm based on AS model and adaptive bilateral filtering algorithm is proposed. First, the atmospheric dissipation function is estimated by the bilateral filtering smoothing characteristics, and the fog image removal processing is realized by combining with the estimation of atmospheric light intensity value. Then, concerning the distortion of the bright portion, the color distortion and local weakening are further realized by introducing the auxiliary function to the adaptive control and optimization of the transmittance. The simulation results show that the 4 groups of different depth under the fog images in the new algorithm, the overall definition is superior to other methods, computing time occupies obvious advantages, and the fastest can save 54. 9480 seconds. The details of the treatment are more delicate, edge information retains more complete, especially at the edge of the depth of field mutation without halo effect, the overall color distortion improves a lot.
出处 《佳木斯大学学报(自然科学版)》 CAS 2017年第1期71-76,共6页 Journal of Jiamusi University:Natural Science Edition
基金 湖南省自然科学基金项目(2016JJ4074) 湖南省教育厅科学研究项目(14C0920) 吉首大学校级课题资助项目(15JDY032) 吉首大学课题资助项目(Jdy16023)
关键词 去雾算法 AS模型 自适应双边滤波 清晰度 快速 removal fog algorithm AS model adaptive bilateral filtering definition fast
  • 相关文献

参考文献7

二级参考文献185

  • 1刘楠,程咏梅,赵永强.基于加权暗通道的图像去雾方法[J].光子学报,2012,41(3):320-325. 被引量:23
  • 2芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 3王大宇,崔汉国,陈军.鱼眼图像轮廓提取及校正研究[J].计算机工程与设计,2007,28(12):2878-2879. 被引量:24
  • 4H Koschmieder,Theorie der horizontalen sichtweite[J].Beitr Phys Freien Atm,1924,171-181.
  • 5Y Y Schechner,S G Narasimhan,S K Nayar.Instant dehazing of images using polarization .CVPR .Kauai:IEEE Computer Society,2001.1:325-332.
  • 6S Shwartz,E Namer,Y Y Schechner.Blind haze separation .CVPR .New York:IEEE Computer Society,2006.2:1984-1991.
  • 7S G Narasimhan,S K Nayar.Chromatic framework for vision in bad weather .CVPR .Hilton Head,Sc,USA:IEEE Computer Society,2000.1:598-605.
  • 8S G Narasimhan,S K Nayar.Contrast restoration of weather degraded images[J].2003,IEEE Trans on PAMI,25(6):713-724.
  • 9S K Nayar,S G Narasimhan.Vision in bad weather .ICCV .Kerkyra,Corfa,Greece:IEEE Computer Society,1999.2:820-827.
  • 10S G Narasimhan,S K Nayar.Interactive de weathering of an image using physical models .ICCV Workshop on Color and Photometric Method in Computer Vision .IEEE Computer Society,2003.

共引文献265

同被引文献5

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部