期刊文献+

45nm芯片铜互连结构低k介质层热应力分析 被引量:3

Thermal Stress Analysis for the Low-k Dielectric Layers of Cu Interconnects in a 45 nm Chip
下载PDF
导出
摘要 采用铜互连工艺的先进芯片在封装过程中,铜互连结构中比较脆弱的低介电常数(k)介质层,容易因受到较高的热机械应力而发生失效破坏,出现芯片封装交互作用(CPI)影响问题。采用有限元子模型的方法,整体模型中引入等效层简化微小结构,对45 nm工艺芯片进行三维热应力分析。用该方法研究了芯片在倒装回流焊过程中,聚酰亚胺(PI)开口、铜柱直径、焊料高度和Ni层厚度对芯片Cu/低k互连结构低k介质层应力的影响。分析结果显示,互连结构中间层中低k介质受到的应力较大,易出现失效,与报道的实验结果一致;上述四个因素对芯片低k介质中应力影响程度的排序为:焊料高度>PI开口>铜柱直径>Ni层厚度。 The fragile low-k dielectric layers of Cu interconnects in an advanced chip are prone to failure damage due to the higher thermomechanical stress during the chip packaging, resulting in a problem of the chip package interaction (CPI). The 3D thermal stress analysis for a 45 nm chip was per- formed by the finite element method with sub-modeling technology and the interconnects were simplified as an effective thin layer in the global model. The effects of PI opening, copper pillar diameter, solder height and Ni-layer thickness on the stress in the low-k dielectric layers of Cu/low-k interconnects during the flip-chip reflow process of the chip were studied by this method. The analysis results show that the stress of the low-k dielectric in the middle layers of interconnects is in high failure risk due to the relative- ly higher stress, which is consistent with the reported experimental results. The effects of the four factors on the stress in low-k layers can be ranked as : solder height 〉 PI opening 〉 copper pillar diameter 〉 Ni- layer thickness.
出处 《半导体技术》 CAS CSCD 北大核心 2017年第1期55-60,共6页 Semiconductor Technology
基金 国家科技重大专项资助项目(2014ZX02501)
关键词 芯片封装交互作用(CPI) 有限元分析 低介电常数介质 子模型 热机械应力 45 nm芯片 chip package interaction(CPI) finite element analysis low-k dielectric submodel thermomechanical stress 45 nm chip
  • 相关文献

参考文献2

二级参考文献19

  • 1杜鸣,郝跃.超深亚微米集成电路的铜互连技术布线工艺与可靠性[J].西安电子科技大学学报,2005,32(1):56-59. 被引量:5
  • 2Chang K M,IEEE Electron Device Lett,1999年,20卷,4期,185页
  • 3Batchalder T,Solid State Technology,1999年,29页
  • 4Qin S,IEEE Electron Device Letters,1998年,19卷,11期,420页
  • 5CEYHAN A,NAEEMI A.Cu/Low-k interconnect technology design and benchmarking for future technology nodes[J].IEEE Transactions on Electron Devices,2013,60(12):4041-4047.
  • 6LAM J C K,HUANG M Y M,NG T H,et al.Evidence of ultra-low-k dielectric material degradation and nanostructure alteration of the Cu/ultra-low-k interconnects in time-dependent dielectric breakdown failure[J].Applied Physics Letters,2013,102(2):022908-1-022908-4.
  • 7GAN C L,NG E K,CHAN B L,et al.Technical barriers and development of Cu wirebonding in nanoelectronics device packaging[J].Journal of Nanomaterials,2012,173025:1-7.
  • 8VAN D W D.Facing the challenge of designing for Cu/low-k reliability[J].Microelectronics Reliability,2007,47(12):1969-1974.
  • 9ZHONG Z W.Wire bonding of low-k devices[J].Microelectronics International,2008,25(3):19-25.
  • 10TAN J,ZHONG Z W,HO H M.Wire-bonding process development for low-k materials[J].Microelectronic Engineering,2005,81(1):75-82.

共引文献20

同被引文献6

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部