期刊文献+

集成于薄板的压电型随机振动能量收集器件优化设计

Optimal design of plate-based random vibration energy harvesting system
原文传递
导出
摘要 将压电薄膜粘贴于方形薄板表面即构成实用的振动能量收集器件,本文研究此类器件在受到宽带随机点激励作用时以平均输出功率最大为目标的优化设计问题,具体包括压电片布置位置和尺寸要求、最优负载电阻等.首先,导出机电耦合系统关于位移和输出电压的随机偏微分-积分方程组,通过模态分析技术消去空间项得到关于主坐标和电压的无限维随机常微分方程组.进而,由线性随机振动理论建立平均输出功率的解析表达,优化问题据此展开.研究表明:宽带激励作用时,压电片最优中心位置处于激励点及与之相应的3个对称点;在最优布置条件下,平均输出功率随压电片尺寸增加近于单调增加,而增速渐缓,据此可定义最优尺寸;在最优布置条件下,平均输出功率随外接电阻的变化有极值出现,可由此断定最优负载电阻.上述研究揭示了对称最优布置位置的存在性及输出功率对布置位置的敏感性,对平板型随机振动能量收集器件的优化设计有一定的指导意义. Pasting piezoelectric thin films on a rectangular plate constitutes a practical vibration energy harvester. This manuscript investigates the optimal design of energy harvesters excited by wideband random point force with the objective to maximizing the mean output power, including the position of piezoelectric patch, the dimension and the load resistance. First, derive the stochastic partially differential-integral equations with respect to the displacement and output voltage, and then by eliminating the partial variables through modal expansion technique, the stochastic ordinary differential equation with infinite dimensions with respect to principal coordinates and voltage is derived. The analytical expression on the mean output power is derived through the linear random vibration theory, based on that the optimal design is discussed in detail. The analytical results show that as for the wideband excitation, the optimal positions of the piezoelectric patch include the self- and the symmetric positions of the exciting point. With the optimal position, the mean output power almost monotonically increases with the dimension of the piezoelectric patch and the increasing speed declines. The optimal dimension can be determined base on the above results. The optimal load resistance is derived by the existence of extreme value of the relation curve between the mean power and load resistance. This manuscript discloses the symmetry of the optimal position and the sensitivity of mean power on position of piezoelectric patch, and provides certain guidance for the design of thin plate-based vibration energy harvesters.
作者 田燕萍 张熙伦 TIAN YanPing ZHANG XiLun(School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China)
出处 《中国科学:技术科学》 EI CSCD 北大核心 2016年第12期1254-1262,共9页 Scientia Sinica(Technologica)
基金 国家自然科学基金(批准号:11302064 51405118)资助项目
关键词 压电型能量收集器件 宽带随机振动 薄板 优化设计 平均输出功率 piezoelectric energy harvester wideband random vibration thin plate optimal design mean output power
  • 相关文献

参考文献2

二级参考文献69

  • 1周洋,万建国,陶宝祺.PVDF压电薄膜的结构、机理与应用[J].材料导报,1996,10(5):43-47. 被引量:22
  • 2唐彬,温志渝,温中泉,董媛.振动式微型发电机的研究现状与发展趋势[J].微纳电子技术,2007,44(5):254-258. 被引量:6
  • 3Guan M J, Liao W H. On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages[ J]. Smart Materials and Structures, 2007, 16(2) : 498 -505.
  • 4Roundy S, Wright P K, Pister K S. Micro-electrostatic vibration to electricity converters [ C ]. Proceedings of ASME International Mechanical Engineering Congress & Exposition. New Orleans, Louisiana: ASME, 2002:1 - 10.
  • 5Wang P H, Dai X H, Fang D M, et al. Design, fabrication and performance of a new vibration-based electromagnetic micro power generator[ J]. Microelectronics, 2007, 38( 12): 1175 - 1180.
  • 6Sbearwood C, Yates R B. Development of an electromagnetic micro-generator [ J ]. Electronics Letters, 1997, 33 ( 22 ) : 1883 - 1884.
  • 7Mitcheson P D, Miao P, Stark B H, et al. MEMS electrostatic micropower generator for low frequency operation [J]. Sensors and Actuators A, 2004, 115 (2 - 3) : 523 - 529.
  • 8Shen D, Park J H, Ajitsaria J, et al. The design, fabrication and evaluation a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting [ J ]. Journal of Micromechanics and Microengineering, 2008, 18(5) : 550- 557.
  • 9Chew Z J, Li L J. Design and characterization of a piezoelectric scavenging device with multiple resonant frequencies[J]. Sensors and Actuators A, 2010, 162( 1 ): 82 - 92.
  • 10Feenstra J, Granstrom J, Sodano H. Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack [ J ]. Mechanical Systems and Signal Processing, 2008, 22(3): 721 -734.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部