摘要
The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrier injection and HPM-induced latch-up are proposed. Analysis on upset characteristic under pulsed wave reveals increasing susceptibility under shorter-width pulsed wave which satisfies experimental data, and the dependence of upset threshold on pulse repetitive frequency(PRF) is believed to be due to the accumulation of excess carriers. Moreover, the trend that HPMinduced latch-up is more likely to happen in shallow-well device is proposed.Finally, the process of self-recovery which is ever-reported in experiment with its correlation with supply voltage and power level is elaborated, and the conclusions are consistent with reported experimental results.
The latch-up effect induced by high-power microwave(HPM) in complementary metal–oxide–semiconductor(CMOS) inverter is investigated in simulation and theory in this paper. The physical mechanisms of excess carrier injection and HPM-induced latch-up are proposed. Analysis on upset characteristic under pulsed wave reveals increasing susceptibility under shorter-width pulsed wave which satisfies experimental data, and the dependence of upset threshold on pulse repetitive frequency(PRF) is believed to be due to the accumulation of excess carriers. Moreover, the trend that HPMinduced latch-up is more likely to happen in shallow-well device is proposed.Finally, the process of self-recovery which is ever-reported in experiment with its correlation with supply voltage and power level is elaborated, and the conclusions are consistent with reported experimental results.
基金
Project supported by the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)