摘要
Three novel amprolium HCl(AMP)-selective electrodes were investigated with 2-nitrophenyl octylether as a plasticiser in a polymeric matrix of polyvinyl chloride(PVC). Sensor I was fabricated using potassium tetrakis(4-chlorophenyl) borate(Tp ClPB) as a cationic exchanger without incorporation of an ionophore.Sensor Ⅱ used 2-hydroxy propyl β-cyclodextrin as an ionophore while sensor Ⅲ used p-tert-butylcalix[8]arene as an ionophore. The three proposed sensors showed Nernestian response slopes of 29.2±0.8,29.3±0.6 and 30.2±0.4 m V/decade over the concentration range from 10–6 to 10–2 mol L_(-1),respectively. The proposed sensors displayed useful analytical characteristics for the determination of AMP in bulk powder, different pharmaceutical formulations, and chicken liver and in the presence of ethopabate. The proposed method was validated according to ICH guidelines for its linearity, accuracy,precision and robustness.
Three novel amprolium HCl(AMP)-selective electrodes were investigated with 2-nitrophenyl octylether as a plasticiser in a polymeric matrix of polyvinyl chloride(PVC). Sensor I was fabricated using potassium tetrakis(4-chlorophenyl) borate(Tp ClPB) as a cationic exchanger without incorporation of an ionophore.Sensor Ⅱ used 2-hydroxy propyl β-cyclodextrin as an ionophore while sensor Ⅲ used p-tert-butylcalix[8]arene as an ionophore. The three proposed sensors showed Nernestian response slopes of 29.2±0.8,29.3±0.6 and 30.2±0.4 m V/decade over the concentration range from 10–6 to 10–2 mol L_(-1),respectively. The proposed sensors displayed useful analytical characteristics for the determination of AMP in bulk powder, different pharmaceutical formulations, and chicken liver and in the presence of ethopabate. The proposed method was validated according to ICH guidelines for its linearity, accuracy,precision and robustness.